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ABSTRACT

Computation of the amplitudes of the diffracted fields which

are produced when a reflection hologram or a "thick" transmission
*t

hologram is Illuminated requires that the 3-dimensional natv.xe of the

hologram be accounted for. A general analytical method is f ormul&ted

for computing the diffracted fields in terms of the initial exposing

field, the film characteristics, and the illumination field, taking

into account the entire emulsion volume. This method, which is

applicable to both transmissicn and reflection holograms, involves

characterizing the emulsion volume by the volume density of scatter-

ing particles, with the diffracted field being found by coherently

summing the scattered waves, neglecting multiple scattering. The

initial exposing field and the illumination field are expressed in

the form of a sum of plane or quasi-plane waves, and the diffracted

field is expressed as a sum of waves, each of which is found by

s lving a variation of the same basic problem. This problem con-

sists of computing the directions, amplitudes, and phases of the

first-order diffracted waves produced when a 3-dimensional array of

scattering particles having a sinusoidal density distribution is

illuminated by a plane wave. The solution of this problem is con-

t sidered, with the directions and phases of the diffracted fields

being computed for both transmission and reflection holograms. The

amplitudes are computed for the case of transmission holograms and

the analytical expressions are evaluated numerically for a number of
p

, particular cases to determine the effect of varying differ ent pare-
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meters on the amplitudes of the diffracted waves. The results are

compared with experimental data obtained by making a careful study

of different holographic diffraction gratings.

The results of the analytical method described above are

compared with the results of the method whereby the hologram is

characterized by the transmittance, and it is shown that with respect

to the comptation of the directions and phases of the diffracted

waves, the two methods are equivalent for the case of transmission

holograms.

The case where the reference beam is composed of a series of

waves (ghost imaging) is considered using both of the above methods,

and the translational sensitivity and background noise which arise in

this case are investigated. An experiment dealing with translational

sensitivity was carried out and the experimental results were found

to be in good agreement with the theory.

The duplication of holograms is considered and the duplication

process is described in terms of making a hologram of a hologram,

rather than in terms of making a contact print. Experimental results

are presented to support this point of view and the effects of vary-

ing the characteristics of the illumination wave are described. M,

duplication of both transmission and reflection holograms is dealt

with and a simple method for duplicating reflection holograms is

proposed and discussed.

p.m
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INTRODUCTION

Holography, or wavefront reconstruction, involves the record-

Ing of an interference pattern which is generated by the coherent

superposition of two or more waves. The basic ideas relating to the

holographic process were discovered by Gabor (1) in 1948, who sought

to utilize holography to increase the resolution attainable with the

electron m-croscope. A considerable amount of work was done during

the 1950's to apply wavefront reconstruction techniques tv microscopy,

but experimental work was difficult due to the lack of an intense

source of coherent radiation in the short wavelength portion of the

spectrum*.

The discovery of the gas laser eliminated this difficulty and

made practical the use of new experimental techniques. Leith and

Upatnieks described the holographic pr 'ess from the viewpoint of com-

_u-ni-at-ozlh-e-o and went on to dt _j, trate experimental tech-

niques (3,4) which made practical the application of holography to a

wide variety of problems. Before discussing those aspects of holo-

graphy which will be of interest here, it may be useful to give a

brief description of the holographic process.

The holographic process can be described in gereral terms as

a two-step process. In the first step an electromagnetic field**

* See reference (68) for a complete bibliography for the period 1948
to 1965.

• Sound waves 'ave also been used (63).

I
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interacts w. h a sensitive recording device (such as a photographic

emulsion layer) and changes its characteristics tn some manner. In

the second step the recording device (which ma# have undergone addi-

tional processing such as development in the case of film) is illumi-

nated with another electromagnetic field in order to produce the

"diffracted" or "reconstructed" field.

The general description of the holographic process given above

is not specific enough to point out those aspects which make it unique-

ly different from other processes which fit this general description,

such as ordinary photography. The fundamental idea which is the basis

of holography is the utilization of the fact that the intensity dis-

tribution in an interference pattern which is generated by two or more

coherent electromagnetic waves is a function of the phases of the

waves. This idea Is utilized in the recording step, where an addi-

tional field (called the reference beam) is combined with the "signal"

field whic is to be re orded-onth fi plate. -The resulting-inter--

ference pattern which is recorded in effect contains both amplitude

and phase information of the signal and reference beams. Thus, by the

use of the phenomena of interference it is possible to encode both

amplitude and phase information with a recording device such as film

which is sensitive only to the intensity of the exposing field.

Discussion and Summary of Text

In the following we shall briefly s$merize # .ad discuss the

various problems that have been dealt with in this thesis, *ithout

attempting to trace the development of similar or related work done
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by other researchers, as this is done in some detail within the

body of the thesis itself.

In Chapter One we formulate a general analytical method for

computing the diffracted field in terms of the initial exposing

field, the fim characteristics, and the illumination field. The

emulsion volume is characterized by the grain density, which spec-

ifies the volume den'ty of s-cattering partizles, anA the diffracted

field is computed by summing the waves scattered by the grains, neg-

lecting multiple scattering. The neglect of the multiple scatter-

ing allows us to treat the problem of computing the diffracted field

from what might be termed a linear systems approach. We express

both the exposing field and the illumination field as a sum of

plane or quasi-plane waves and obtain the diffracted field in terms

of a sum of plane or quasi-plane waves, whose amplitudes, directions,

and phases are computed by solving variations of the same basic pro-

-blem-,that-of-computing the -difracted -fields- produee& when a- three-

dimensional array of scattering particles having a sinusoidal density

variation is illumidttud by a plan wave.

We go on in Chapter One to compute the directions and phases

of these diffracted waves, both for transmission and reflection holo-

grams, and demonstrate that when the illumination wave is the ref-

erence beam, the signal beam is reconstructed. A comparison is then

made o transmission and reflection holograms.

In Chapter Two we compare the results of the analysis of

Chapter One with the analysis x'ormulated by Gabor (5), which was

£



later put in communication theory language by Leith and Upatnieks

(2), and show that with respect to computing the directions and

phases of the diffracted waves, the two approaches are equivalent.

In Chapter Three we consider the case where the reference

beam consists of more than one simple wave, and exmine how thit

affects the reconstruction of the signal beam. If the reference

beam is quite complicated then the illumination of the developed

hologram plate is accomplished by repositioning the hologram in the

experimental setup. The sensitivity of the reconstruction of the

signal beam to repositioning errors is described in terms of the

analysis developed in Chapter One, and computed for a specific

experiment. This experiment was carried out and the experimental

results were found to be in good agreement with the theory.

In addition to being sensitive to repositioning errors, holo-

grams with multiple wave reference beams yield a reconstruction of

the stgnal Veam that is accompanied by a background noise. This

background noise is investigated and a signal to noise ratio is

defined and computed.

Of particular interest is the case where we are dealing with

Fourier transform holograms with multiple wave reference beams, as

they find use in the area of character recognition and complex spa-

tial filtering. We examine translational sensitivity and background

noise for this case when we have plane wave and diffuse illumination.

In Chapter Four we extend the analysis of Chapter One to in-

clude the computations of the amplitudes of tue diffracted waves.



Within the framework of that analysis, it suffices to solve the pro-

blem of computing the amplitudes of the two first-order diffracted

waves produced when an arbitrary sinusoidal 3-dimensional array of

scattering particles within the emulsion layer is Illuminated by a

plane wave. This is done for an arbitrary illuminatior plane wave,

taking into account attenuation within the emulsion layer and re-

flection losses at the interfaces. Here, as in Chapter One, mul-

tiple scattering is neglected. The analytical expressions are eval-

uated numerically for certain special cases and these results are

compared with experimental data derived from a series of experiments

with holographic diffraction gratings. The agreement between ex-

periment and theory was found to be satisfactory.

In Chapter Five the duplication of holograms is described in

terms of taking a hologram of a hologram, rather then as making a

contact print. The duplication of thick transmission hologram is

a tudfed, and the effects of varying the characteristics of the il-

lumination wave are described. Experiments dealing with the dupli-

cation of holographic diffraction gratings are described and the

experimental results support the point of view taken here. A

simple method for duplication of reflection holograms is described

and the various factors affecting the production of duplicate re-

flection are discussed.

In the Sixth and final chapter the results of this thesis

are sumarized and discussed.
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ILAPTn ONE

OATTOING THEORY OF VOLUME HOLOGRAMS

1.1 Introduction

Gabor, in his classic paper (5) describes the holographic

process from the point of viev which we shall term as the transmittance

approach. Basically, the exposing field is taken to be a complex

scalar quantity of the form

U = U°  U* a Aei , (1.1)

where U is assumed to be specified in the plane of the film emulsion

layer. Variations with depth within the emulsion layer are neglected

and the response of the film is characterized by a parameter r (the

tgm ta" of the film). After processing, the developed film plate or

"hologram" is assumed to have an amplitude transmittance T which i.

proportional to [UUO] that is

U C[UI] r  . (1.2)

When the hologram plate is illuminated by another field U , the

transmitted field UT  is assumed to be given by

UT 0 C'UT (1.3)

Equations 1.2 and 1.3 are the fundamental relations used by Gabor and

b7 the majority of investigators engaging in research in the various

aspects of holography. The variations in analysis are primarily
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concerned with different approaches in the computation of the exposing

field U and in the computation of the transmitted or "diffracted"

field at an observation point some distance from the film plate, Leith

and Upatnieks utilized cow4 ication theory to put these calculations

in trabtora language (2), and their approach has been wid#ly used

with excellent results.

The neglect of the variations with depth within the emulsion

layer (i.e. considering the hologram to be two dimensional) is quite

Justifiable when the spatial frequencies recorded on the film plate are

low, as was usually the case in the early work done by Gabor, lodgers,

and others, prior to the invention of the laser. The invention of the

gas laser with its high brightness and relatively long coherence length

made practical the use of high spatial frequencies in the experimental

configurations first develop d and demonstrated by Leith and Upatnieks

(2,3,4). In these configurations the reference beam is brought in at

some offset angle, with higher spatial frequencies corresponding to

larger values of the angle. It was pointed out by Friesem (6) that

as the spacing between fringes becomes comparable with the emulsion

thickness the film plate can no longer be regarded as two dimensional.

In this case the use of the average transmittance becomes questionable

as the variation of the transmittance with depth should be accounted

for. This does not mean, however, that the transmittance approach as

given by equations 1.2 and 1.3 is no longer useful when the spatial

frequencies are high. It viii be shown in Chapter 2 that with respect

to computing the direction and phase of the diffracted waves (produced

m mm m m m m m m m •
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when the hologram is Illuminated) the transmittance approach yields

results which are in agreement with the more general theory which will

be presented in this chapter. Where the transmittance approach breaks

dow, is in preoidting the amplitudes of the diffracted waves. For

example, it has been noted by a number of researchers (T,8,9) that for

hologram having high spatial frequencies the brightness of the recon-

struction is highly dependent on the angle of illumination.

7he first attempt at accounting for the finite thickness of

the emulsion layer appears to have been done by Denisyuk (10.11), who

was primarily concerned with the "reflection hologram." In this case

the interference planes (planes of maximum intensity in the inter-

ference pattern generated by the signal and reference beams) are nearly

parallel with the emulsion surface and the emulsion layer i considered

as thick. P. J. van Heerden, in his investigations of optical infor-

mation storage in solids (12,13), tnkes full account of the three-

-4imentien atre-of the-recording-ofIterferencepaterns vitbn a

film emulsion layer. He outlines an approach whereby the exposing

field Is treated as a sum of plane waves, and considers in some detail

the recording of the interference pattern of two plane waves on film.

Leith and co-workers (8) have investigated holographic data

storage in three-dimensional media, and have analyzed the effect of

emulsion thickness on the optical characteristics of the reconstructed

im.Ses. They treat in detail the case of a hologram of two plane

waves (a hologram diffraction grating) noting that the complex spatial

distribution of the light from an object can be decomposed into a
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o;*ctrum of plane waves.

Offter, in a recent paper (14), considers the specitl case

of a hologram of two point soirces and treats the hologram as a

diffraction grating whose parameters are a function of position. He 

then uses generalized grating equations and ray tracing techniques to

compute the direction of the diffracted wave in order ft examine the

reconstruction process. Offner notes that these techniques can be

e3tended to more general holograms.

In this chapter the holographic process is described from

a point of view which is closely related to the ideas of van Heerden

(13) and Offner (14). The exposing field in the vicinity of the film

plate is written as a sum of well..defined wavefronts. The developed

film emulsion layer is characterized by the grain density D, which Is

related to the total electric field 2 within the emulsion layer by a

power series A-n - - The various -nterference -erms appearing in

the resulting expression for D, which yield the real and virtual

images, are identified, as are those terms which yield ghost images

and higher order images.

The assumption is made that each film grain acts as an inde-

pendent scatterer when the hologram is illuminated (i.e.,we neglect

multiple scattering). It Is sho-wn that this implies that with re-

spect to computing the direction and phase of the scattered waves the

various periodicities or "grating terms" in the expression for D can

be considered separately, with the total diffracted field being the

linear sum of the waves diffracted by each "grating." The compu-
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tation of the amplitudes of the diffracted waves is considered in Chap-

ter Four. In this chapter, general expressions for computing the

Cirection and phase of each wave diffracted by a typical periodicity

of D are derived for arbitrary plane wave illumination, in terms of

the initial exposing waves which generated that periodicity. These

expressions are then used to predict a reconstruction of the original

wavefronts (virtual image) when the illumination beam is the reference

beam.

The analysis is then extended to the case of the r'flection

hologram. The reconstruction is described in terms of Bragg reflec-

tion from the interference planes within the emulsion layer, as given

in the expression for the grain density D. The reconstruction of the

original vavefronts (virtual image) is then analyzed and finally, a

comparison is made of the reflection and transmission holograms.

3 .2 Recordina Process

In this section we shall consider the specification of the

relevant characteristics of the developed film emulsion layer in terms

of the exposing field. The exposing field in the vicinity of the

film plate is written in a general form, with no consideration being

given to the problem of relating the field at the film plate to the

sources which generated the field.

1.2.1 Exposing Field

The field which exists in the region of the film plate during

exposure of the hologram is taken to be of the form of a sum of well-



defined, regular waves. Plane waves or spheriial waves would be

examples of such waves, but in general any wave whose wavefronts are

sufficiently smooth, such that they can be approximated (locally) by

a plane wave. satisfies the conditions being imposed ),ere. It will

be assumed that the source used is monochromatic and that the various

waves add coherently in the region of spece occupied by the film

plate. Thus, us.ng complex notation, the field in the region where

the film plate is to be placed is written in the form

I(kn'r * On) -iwt

g e e (1.4)

In the above expression, En is a real. vector, 0 n is a real con-

stant, and the propagation vector n is given by

2w (1.5)
n 7- n

0

Both En and n may be functions of ;, but are assumed to be

sufficiently slowly varying such that the wavefronts may be con-

sidered as (locally) planes*.

In most cases of practical interest (ghost imaging being an

exception) one of the well-defined wavefronts in the sum in equation

1.4 has a greater amplitude than the rest and has a direction of

propagation significantly different than those of the othei" terms

in the sum. This wave is commonly referred to as the reference beam.

*See section 1.3.2 for a more complete discussion of this point.
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It will be convenient to write the term correspording tc the ref-

ence beam eaparately, thus

M.
A e~ ~ e~E .(.6)

1.2.2 Recordin Media

The characteristict of the developed film plate, or hologram,

which was exposed to the field given by equation 1.6, depenis on the

nature% o1 the film and development process, and upon the field within

the emulsion layer during exposure of the plate. The field within

the emulsion layer vill be of the same form as equation 1.6 but the

propagation vectors will have a different direction (and magnitude)

due to refraction at the emulsion-air interface. In addition, the

vectors r will be different due to reflection losses at tne inter-

face. In the analysis presented here -tmtenun orszcatterng_

that may take place within the emulsion layer during exposure will be

neglected. No notational chauges will be made to differentiate

between the fields within and without the emulsion, the meaning being

clear from the text.

The characteristic of the developed film emulsion which is of

interest here is D, the volume density of gra--ins within the emulsion

layer. In the case of phtographle emujsions utilizirg silver hulides

within a gelatin matrix, the grains referred to are all metallic

silver particles of rather complex shape. If the emulri:n J.s bleached



during processing, then these metall.Lc silver particles are replaced

by a transparent silver compound having an index of refraction dif-

ferent than that of the surrounding gelatin matrix. Tn this case the

grali- referred to would be these transparent silver compounds. The

basic property of these grains which is of Interest is that they pos-

seas either, an index of refraction or conductivity which is different

from that of the uniform gelatin matrix of the emulsion layer, and

thus they act as scatterers of radiation %then the hologram is illu-

minated. rhe details of the chemical processes which take place with-

in the emulsion layer are discussed at length in several excellent

references on photographic chemistry (15,16).

Photographic film -s sensitive to the total electric field,

rather than to the power density or magnetic field. This is a sig-

nificant factor when the exposing field is of the form of an inter-

ierence pattern generated by the coherent superposition of two or more

waves, and is discussed more fully in Appendix I.

The grain density D is expressed in terms of the square of

the magnitude of the total electric field that existed within the

emulsion volume during exposure of tie film plate. That is

D a Co + C + C + (1.7)

where Co, C0 , C2, --- are constants which depend on exposure time,

film ch~racteristics, processing procedures, and the wavelength of

the monochromatic exposin ield. The quanAity Id is the square

£
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of the magnitude of the exposing electric field and in given by

where k is given by equation 1.4. It is a straightforward computa-

tion to express the grain density D in terms of the initial ex-

posing field given by equation 1.6 using equations 1.7 and 1.8.

These computations are carried out in detail in Appendix II and the

results are given below. It is found that D can be written in the

form

D C + CE+ C2Eo 4 (2C E + 4C E 3 ) b o
10 20 1 0 2o 0 n coho n/ nJ

+ (c + 2C E,2) cos( E -4 -
n,m

+ 2C IF 2 bnbm cos[(ini) -0 ]

+ 2c 0 bn COS[2(io-En)';-20]

ngm

* I4C2E 0 bnC pq cos[ E n+tAp - q )-.;-0n +0 -0 q
n,p,q

SC2  C= Cpq nmpq e n pq

n,m,p,q

" higher order terms (1.9)
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The quantities bn and Crm are defined by

b a 119.
n lIT o nl

0

and

In addition to the presence of "grains" distributed through-

out the sensitiv-e portion of the volume of' the recording media,

there n-ry also occur a varivatien in thickness of the recording media.

This h.as been observed by Bigler (17) for Kodak type 64~9-f and type

So-2 113 film plates. Bigler reported that reconstructions in re-

flection could be obtained from such film plates when they were

coated with aluminum. Altman (18) discusses relief images on type

649-f plates in more detail and mentions ways in which such images

may be enhanced. Urbach and Meier (19) have produced holograms

using a "grainless" recording media, where a "phase image" is pro-

duced by electrostatically induced deformations of a dielectric

surface. It is thus clear that in certain cases the variations in

thickness of the recording media may be the significant factor. In

other cases, however, such as when photochromic glass (20) is used

as the recording media, the variations in thickness will be negli-

gible or non-existent. In the analysis presented here any varia-

tions in the thickness of the recording media will be neglected.

This is clearly a good approximation for the case where photochromic

glass is the recording medium and appears to be a reasonable %pproxi-

° I
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ation for type 649-f film (17).

1.3 Reconstruction with Transmission Type Hologrm

In the reconstruction process the developed hologram plate

is illuminated with some form of electromagnetic wave, usually the

refee b6m or some wave of similar characteristics. The problem

which will be considered now will be the computation of those prop-

erties of the diffracted field which can be computed from a know-

ledge of the illumination wave and of the hologram film plate as

described by the quantity D given by equation 1.9. It is noted

that D, the volume density of metallic silver grains within the

gelatin matrix of the film emulsion, is not a complete description

of the diffracting structure, the film emulsion layer. No attempt

has been made to describe the characteristics of the individual

grains, such as their size, shape, orientation, etc. Thus it should

be expected that only certain characteristics ef the diffracted

field can be computed from a knowledge of D alone.

Examination of the expression for D shows that the film

emulsion layer is a periodic structure, and that these periodicities

are specified in the expression for D given by equation 1.9. A

knowledge of these periodicities allows the computation of the di-

rections of the various diffracted waves, as well as their phases.

A knowledge of the periodicities alone, however, may not be suf-

ficient to provide for the computation of amplitudes, and thus the

distribution of power among the diffracted waves. The situation

is analogot to the problem of computing the radiation pattern of
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an antenna array, where the location of each antenna is known but

the individual characteristics of each antenna are unknown. 1b#

array factor can be computed from the periodicity but the radia-

tion pattern of the indiNidual antennas remains unknown. In the

case under consideration here, we find that a great deal of infor-

mation can be obtained regarding the amplitudes of the diffracted

waves from a knowledge of the periodicaties alone. This is dis-

cussed further in Chapter Four.

1.3.1 Linearity Hypothesis - Neglect of Multiple Scattering.

We shall assume that the field scattered by each grain

(metallic silver grain for unbleached gratings, dielectric grain

for bleached gratings) is essentially independent of the presence

of the other grains within the gelatin matrix of the film emulsion

layer (i.e., we neglect multiple scattering). That is, we assume

that-the- field -scttered-by- any -given graitsdepe-ndent pri7rily

on the illumination field and not to any great extent on the field

scattered by the other grains. This would clearly be the case if

the amplitude of each scattered wave is small and if the grains are

reasonably far apart, and if the emulsion layer is sufficiently

thin.

The total scattered field is then just the linear sum of the

individual vavefronts scattered by each grain within the emulsion

layer. It makes no difference how the terms are grouped in the sum,

provided each vavefront is counted one and only once. A convenient

way to group terms is to consider all the grains associated with a



particular periodicity term in equation 1.9. The vaves scattered

by these particular grains will add in phase in certain directions,

resulting in the "diffracted waves" which are produced by that

periodicity. The calculation of these "diffracted waves" from a

given periodicity, neglecting the presence of all other period-

icities, is seen to be a logical extension of the stipulation that

it is valid to treat the field scattered by each grain independently

of all others.

The assumption is made that the amplitudes of the waves

diffracted by each periodicity are proportional to the coefficient

of the corresponding periodicity term in equation 1.9, and this is

merely L statement that in effect says that doubling the number of

grains contributing to the diffracted wave doubles the amplitude

of the wave, since the individual scattered fields are sied co-

herently.

1.3 ure of a c ar Periodicity - Restrictions on the

Elxosing and Illumination Fields

It is recalled that the propagation vectors R in equationa

1.6 are not necessarily constants, but were assumed to be slowly

varying in the region where the film plate vas to be located. It

is thus apparent that the periodicity associated vith each cosine

irtt.ference term in equation 1.9 is in general a function of posi-

tion over the film plate. The stipulation that the Rn vary slowly

is defined by requiring that this variation be sufficiently slow

such that it is valid to compute the directions and phases of the
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diffracted waves assuming the periodicity is (locally) constant.

A similar restriction is placed on thu illumination wave, namely

that it behaves loally as a plane wave, or in the more general

cage, as a sum of such waves.

It is thas clear that what is required is the Oeneral solu-

tion of the problem of computing the direction and phase of the'

waves diffracted by a diffraction grating which was made by retord-

ing the interference pattern of two plane waves and which is il-

luminated with another plane wave. Consideration of this problen

shows that it is the periodicity in the plane of the emulsior-air

interface that determines the diretions of the diffracted vayes

(along with, of course, the direction of the il~luminatior, wave, on

the air zide of the interface). PRosically, this cn be explained

by a simple consideration r.f the imqlications rf the assumption

that multiple scattering can te neglected. If we consider the

grains associnted wlth tk~e particular periodicity under consider-

ation which lie within t*'e infinitesimal layer between z' and

z' + z' (z ' defined normal to the emulsion-air interface), then

it is clear that the directions in which the waves scattered by

these grains add in phase are the same as for those grains that

lie in the z' 1 0 plane. Whether or not the waves scattered from

grains within the two "planes" add in phase is a separate question,

one which is dealt with in Chapter Four.

The periodicity in the plane of the emulsion-air interface

(z' 0 0) is specified by the fields that existed on either side of
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the interface during exposure of the film plate. This is a con-

sequemzie of the fact that the interference planes must match up at

the interface In order to satisfy boundary conditions.

1.3.3 Interference Pattern of Two Plane Waves

In thiu section ve shall compute the orientation and spacing

of the intersection ot the planes of maximum electric field in an

interference pattern (produced by two plane waves) with the &I * 0

plane (plane of the emulsion-air interface). Thus, we consider the

non-localized interference pattern generated by the two plane waves

0 e 1 "1 1 0 1 e~i 'm  (110)

and

-T, -. R e - e- _ _ _ _ _ _ _2 " 0 -e" (.3

What is of interest is the interference term in ' where

It is readily seen that

.', 2E2 + 2E2 cos[( - + ).i 0-"] " (1.12)
0 0 1 -2 1 2

The interference pattern is characterized by loci of points of

maximum E',which are a set of parallel planes defined by

( - 2 ); + 0 1 - 0 2 & 21 (1.13)
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where M is an integer. The lines of intersection of these planes

with the plane of the emulsion Prfaee, the z' P 0 plane., are the

loci of points given by equation 1.13 vith

X, + ~*'(1.14)

Letting 1' m,', n be the direction cosines of and t5 ' M"u n

be the direction cosines of i2 , with respect to the x', y' .'

coordinate system, the loci of the lines of intersection In the

z' - 0 plane is given by

2w ( i ')x' y- 0.2 . (1.15)
o 0

These lines make an angle # with the x' axis given by

* a tan-1 (L2 -i) . (1.16)
m' - a'

1 2

_-- ~We rha find it convenient to define the xyz coordinate system by

a rotation of * about the z' axis (see Appendix III for the

coordinate transformations and for the transformation equations for

the direction cosines). In this coordinate system

L, a Z2 (1.17)

and thus, in the z a 0 plane, equation 1.15 becomes

2, (m _ 2) y 0 0i " 02 0 2wM . (1.18)

0

m



The periodicity D. or spacing of the intersection lines in the

z a 0 plane Is seen from equation 1.18 to be given by

d 0 (1.19)

This displacement 6 or the## lines, detined by setting M? 0

in equation 1.18, is given by

X (02 - 0) (1.20)2w (10 1 m2)

1.3.4 Generalized Grating Equations

Equations 1.16, 1.19, and 1.20 determine the orientation,

spacing, and displacement of the lines of intersection of the planes

of maximum intensity with the emulhion surface plane. The problem

is nov one of computing the direction and phase of the diffracted

waves when this periodic structure is illuminated by a plane wave

-of-the orm-

el e (1.21)

where ;-2e and A is not necessarily equal to A 0 The

directions ed of the diffracted waves are determined by the re-

quirement that the "elementary" waves scattered by each grain in the

periodic structure add in phase. This condition can be stated

geometrically in terms of the path lengths between two planes, A and
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B, defined by

a c!  (1.22)

and

cd.r C2  (1.23)

The constant c1 is taken to be negative so that plane A is on

the incident side of the diffracting structure, while c2  is

taken as positive so that plane B is on the transmitted side of the

structure. We are interested in L, which is the path length

between the planes A and B, going from plane A to a point P along

ei, and then from Po to the plane B alog ed. We see that,

if ro is the position vector of P

La-cI + ei + c2  red (1.24)

or, taking P to lie in the z • 0 plane,0

L = (Li - Ld) xo + (mi - md) Yo + c2 - c. " (1.25)

We now impose two conditions on L to determine the allowed

directions of e Th,; first of the two conditic.-s is that L be

independent of x . This assures that there is n net phase shift
0

as we move along a grating line. From equation 1.25 we see that

this requires that

I
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The second of the tw o conditi ._P is that 1 charge b intesral

number of wavelengths NX as y0  changes by d , the periodicity of

the recorded interference pattern in the z * 0 plane. From equation

1.25 we see that this requires that

(ad - m) d (1.27)

or, using equation 1.19, we see that

(ad -mi)  1AL Il. m21 1.a

The z direction cosine of ed is determined from the condition that
2 2 2

+ _ +2 • 1 and the stipulation that we are considering trans-

mitted waves, which means that nd will have the same sign as n.

Equations 1.26 and 1.28 thus specify the direction cosines

of the diffracted waves in terms of the direction cosines of the

illumination wave and the two initial exposing waves. The x direc-

tion cosines of the initial exposing waves enter implicitly through the

definition of the x,y,z coordinate system. The corresponding equa-

tions in the x', y', z' coordinate system are found by applying the

transformation equations given in Appendix III:

NX sin t * - [(t-L) sin2 , + (mi-mP) sin * co. 01 (1.29)
T 0
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and

' - os 21- sin 0 coo * + (n-m) c082 6 (.

Equations 1.26, 1.28, 1.29 and 1.30 are essentially the same as those

used by Offner (14) in his work on ray tracing in holograpy. Offner

reAerences the work of Toraldr di Franci (21) who preserts these results

without reference or derivation.

The phase 0d of the diffracted wave under consideration is

found by requiring that the interference pattern generated by the trans-

mitted portion of the illumination wave and the diffracted wave "match

up" with the interference pattern recorded on the film plate, in the

z a 0 plane. The intersection lines of the illumination interference

pattern and the z = 0 plane are given by

A_ w ~ 2 -- m )-V" *--# d -2wM . -- 13 - _-_ _

Recalling that ti z d 1 the spacing of these lines di is given by

di = (1.32)

Using the value of Imi - mdl given by equation 1.28, with N 1 1

it is seen that

0 (1.33)
i -T 2
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and nence is equal to the periodioity of the recorded Interference

o patterr. We specify Od by requiring that the loci of minimm field

intensity coincide with the loci of maxism grain density in the

z z 0 plane. Thus wes et y- and M 1/2 in equation 1.3l, and

solve for 04 We obtain

04* 0 + x Ti 0) - a (.34)

S(1 - 2 1

Now from equation 1.28 we see that

S(d mi) (135)

where N is an integer. Thus, we can write equation 1.34 in the form

__ _* -2" 12 - 1-1

where M is an integer. We use M rather than N because of the

ambiguity in sign due to the fact that we have the absolute magnitude

of - 2  in equation 1.35.

1.3.5 Interpretation of the Terms in the Grain Dmty__Eauatio

Let us consider the expression for the grain density D

given by equation 1.9. According to the theory presented here, the

field diffracted by this composite periodic structure in found by

suming the fields diffracted by each periodicity, i.e., by the grains



associated with each interference term in equation 1.9. In actuality

only a portion of these terms is of interest and it will be possible

to ignore moat of the higher order terms. A dlscussion of the signifi-

canoe of the various terms in equation 1.9 is thus of interest at this

time.

However, before doing this, it is useful to show that Illum-

ination of a particular periodicity with one of the two original waves

that formed it yields a diffracted wave having the same direction and

phase as that of the other original wave. Thus, let us consider a

periodicity term of the form

Cr c ( i - Rj)'; + 01 " .jl (1.37)

and let the illumination wave be given by

-! " Ei (gi'F + i't) "(1.38)

i 4  
Eioe ' 0 W

Then, in the xyz coordinate system defined by equation 1.16 with

1 a i, 2 .3, it follows from equations 1.17 and 1.26 that

zd *t . (1.39)

Application of equation 1.28 yields

md mii + Nmi " amJ (1.40)

end since N can assume the values *1, we see that one of the first

or-'er diffracted waves has

ad U . (1.41)

The phase of this wave is found from equation 1.34 and is given by



Thus, it is clear from equation 1.39, 1.41 and 1.42 that one of the

two first-order diffracted waves has the sma dirM tion md phase

(exc'ept for the constant factor of -w ) as that of one of the two

original exposing waves, when we illuminate with the other original

exposing wave.

Returning to eqation 1.9, the constant terms

C + CE 2 e C2E 4 + ... will constitute a bias, which is reqvired, of
0 10 C2 0

course, as it is physically meaningless to have a negative density, and

the various cosine interference terms assume negative values. The terms

(2C E + 4CE0) b cosU(R -i 4 01(..)1 0 o n n  n n

give rise to the real and virtual images, which are usually what is of

interest in the reconstruction process. The real image is associated

with one of the first-order diffracted beam for each elemental

periodicity in equation 1.43, while the virtual image is associated

with the other first order. Because of the sinusoidal variation of

density of each of the periodicities, there are no second-order

diffracted waves associated with each of the periodicities,5 and thus

N in equation 1.28 has allowable values of only -1, 0 and +1.

The "second order" real and virtual images which are observed

are produced by the first-order waves diffracted by the periodicities

associated with the terms

S~ Tis is discussed in Appendix VI.
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2C 2 e b2  eo, (i - 2).9-2 ] (1.)
nn

The second order images thus arise because the film In not linear in

being non-zero. The terms

+ 2C2  , b b!. oou.(In - I + On - 0 1n ].
n's

are of interest in "ghost imaging," and will be discussed in detail in

Chapter Three.

The remaining higher order terms contribute little of interest

and can usually be neglected diae to the small size of their coefficients

and usually unfavorable illumination conditions.* Thus, the diffracted

fields that will be considered are those _41faoted -rthe-pertodleitles-

associated with the terms given in 1.43, 1.44 and 1.45. Each of these

terms is of the form

coefficient x cos[(i 1 - d.' + . - 021

By unfavorable illumination conditions ye mean the case vhere the
direction of the illumination vave is sich that the waves scattered
11y the grains associated with the pa-ti4 lar periodicity under con-
sideration do not add in phase when the entire emulsion volume is
taken into account, with the result that the amlitudes of the dif-
fracted waves are quite small. This is discussed in detail in
Chapter Four.
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and thus eqution 1.3, 1.38 and .hk *an be sied to coute the

direc tion and iphamme of the waves diffracted by euh periodicity.

1.3.6 General Illumtnation

It was shown in the previous section that the teom in

equation 1.9 for the rain donsity D which are of interest can be

written in the form

D a d* d i coS((E - Ej).4 + 0. " 0 3]1 (1..6)

If the hologram is illuminated by a wave of the form (which

satisfies the restrictions mentioned in section 1.3.2)

i(E1 ' e f -ij (1..7)
B io (

then according to the analysis presented here, the diffracted field will

b6 of the form

3 1 3  ±Eijll' e liJ~l e"S t  (..8)'Ed" ij d ijNe iNOit(.8

The propagation vectors l are determined by applying equationsIaN
1.26 and 1.28, while the phase factors 0iJB are found from either

equation 1.3 or 1.36. The diffracted waves as given by equation 1.48

are taken to be proportional to the coefficient of the corresponding



periodicity term du , as was discussed in Section 1.3.1. The real

vectors F account for the aMlitudes and polarizations of the 4

diffracted waves. A rigorous computation of these factors requires

the solution of the electromagoetic boundary value problem of the

system. This, of course, requires more information about the emulsion

layer than is given by the grain density D . The problem of the

rigorous computation of will not be considered in this thesis,

but certain aspects of computing the amplitudes of the diffracted

vaves will be considered in Chapter Four.

In the more general case the iJlumination field may be a sum

of terms such as given by 1.47. In this caste the diffracted field

would be the sum of fields given by 1. 48, one such field for each

illumination vavetroat. This assvmes that the field that is scattered

iyeachVrain w thtzi the emulsion Iayerwb .t is 4lluminated by

number of separate wavefronts is the linear sm of the fields that would

be scattered by the grain for each illumination wave taken separately.

1.3.1 Reconstruction of the Original Fields (Virtual Immae)

In this section we shall consider the case where the illumin-

tion beam E is identical to the reference beam that was used in ex-

posing the film plate. We saw in Section 1.3.5 that illumination of a

particular periodicity with one of the original exposing waves yields

the other original exposing wave as one of the two first order diffracted

waves. Thus the grains associated with the periodicity terms given by

equation 1. 4 3 give rise to a reconstruction of the signal beam when the

rS



illumination rave is the reference beam. In actuality, the reconstruc-

ted field will be of the tom

I P(2CR * 1903)b e M .0  w wt)

+ zero order term + real image term 4 ghost image term

* second order terms + higher order term (1.-49)

Comparing the diffracted field as given by equation 1.49 vith the field

that existed at the film plate during exposure of the hologram (equation

1.6), it is seen that except for the unimportant constant phase factor

of - W, the waves given by the sun in equation 1.49 have the same

direction and phase as those of the initial exposing field. Thus,

except for possible questions regarding the amplitudes of the diffracted

waves, one could say that equation 1.49 predicts the reconstruction of

the original exposing vavefronts.

1.4 Reflection or "White Light" HologrmRs

In this section we shall consider reflection holograms. It

will be seen that they can be treated quite adequately vithin tie frase-

work of the analysis presented in the preceding sections. The analysis

is essentially the same until we compute the direction and phase of the

diffracted waves, at vhich point a different method of adding the scat-

tered fields is used.
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1.4.1 Introuctlon

The distinction between reflection and transmission hologras

is made with regard to whether the reconstructed fields are produced on

the s *Ide (refleotion) or on the opposite side (tranaaision) of

the film plate with respect to the illumination wave. In the case of

the transmission holograms, it was implicitly assumed that the reference

beam and signal beam were incident on the film plate from the same side

( r ! 9
00 and e < 90o  in Figure 1.1a.) In the case of the reflection

hologram, however, the reference beam is brought in from the other side

(r 9 o in Figure 1.1a.) When the illumination is done using the

reference beam, the reconstructed signal beam (virtual image) is formed

in transmission for the transmission hologram in reflection for the

reflection hologram (Figure 1.1b,c.)

Reflection hologram were first 4nvestigated by Denisyuk (10,

11), who described the recording process in terms of the recording of

the intenity-dietruton-i-n-the-standi-ng-wave- 4ntfeerene--attern--

formed by the reference beam and the light scattered by the object. In

the reconstruction process, Denisyuk described the reflected field in

terms of the waves reflected from the interference planes within Lhe

emulsion volume. He noted that the reflection hologram should act ac Ln

interference filter, reflecting only those wavelengths which lie in a nar-

row band about the wavelength used in exposing the plate.* This effect has

* Except for emulsion shrinkage effects, which shift this wavelength
band. This is discussed further in Section 5.5.2.
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given rise to the use of the term, "white light hologram" for reflection

holograma, due to the fact that a reconstruction can be obtained when

the hologram is illuminated with white light.

Deninyuk who was working with non-laser sources, used the

transmitted portion of tio recr-noe beam to illuminate the object.

The object was placed quite close to the plate in order to keep path

length differences small. With the advent of the gas laser with its

long coherence length, more efficient and elaborate experimental setups

became practical. Stroke and Labryie (22) produced reflection holo-

grams (using a laser as a source) which could be viewed In reflection

with illimination prGvided by a flashlight or the sun. They described

the reconstruction in terms of Bragg reflection from the grating-like

stratifications within the emulsion layer. Lin et El (23) extended

the experimental techniques to the use of too different wavelength

lasers and made reflection holograms _which yield mu olor~reon-

structions when viewed using white light. Other work in the area of

reflection holograms has been reportel by Upatnieks et al (24) and

Stroke and Lech (25).

1.4.2 Recording Process

The description of the recording process presented in

Eection 1.2 is sufficiently broad in scope that we may treat the case

of reflection holograms without any modifications. Indeed, it is re-

called that in section 1.2 there were no assumptions made with respect

to the relative directions of arrival of the signal and reference beam

vavefronts. Thus the formulation of the exposing fields as given by

) m m m m m mm m m •
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equation 1.6 is adequate for application to the case of reflection

holograms. The same restrictions that were placed on the nature of

tr.e indiviaual weves which are represented by the terms in equation

1.6 are retained here, snd thus the grain density of the developed re-

tlection hologram film plate is given by equation 1.9. As before, we

neglect any variations in thickness of the tnulsion layer and con-

sider both surfaces to be planes.

1.4.7 Linearity Hypothesis

The problem under consideration now is the determination of

the direction and phase of the reflected fields that are produced when

the -eflection hologram is illuminated. The same assumptione that were

made in section 1.3.1 are made here, namely that multiple scattering

cen be neglected. Thus, as was discussed in section 1.3.1, the field

scattered by the grains associated with eacn basic periodicity within

the emulsion layer can be computed independently of the presence of

all others, and the total field is found by summing the fields scat-

tered by each of the periodicities as specified by equation 1.9.

1.4.4 Standina Wave Interference Pattern of Two Plane Waves

What is of interest is the computation of the direction and

phase of the fields scattered by the grains associated with a particu-

lar periodicity term in equation 1.9. It is recalled that the. prona-

gation vectors of the waves which gave rise to these interference

terms were not necessarily constants, and hence the "periodicity"

varies as a function of position throughout the emulsion. As before,



37

ve vill assume that the spatial v riation of the propagation vectors

vas sufficiently slow such that i W regard the periodicities as

(locaUy) constant. The proble! ii then reduced to determining the

field acettered by the grains , ociated with an interference pattern

generated by two plane waves. his is the proath that was used in

the case of the transmission hologram, only in this case the scattered

waves will be added in a different manner and hence it vili be con-

venient to use a different coordinate system than the one that was

used in section 1.3.3. In addition, we will wish to make the compu-

tations with respect to the fields within the emulsion layer.

Thus, let REI and E2 be two plane waves which existed in

the emulsion layer during exposure of the hologram, where

i(l' +i *i0

2.e+ 1) (1.50)

and __--_-_

~i 2' ; ~~ + 0 2) (.12 0 o•(.1

As before, we are interested in the interference term in R.A,

where 1 + 2 and

E .2E 2 + 2E2 '_os[(j - '+ 0l-02. (1.52)
0 0 1 2 1 2

The interference pattern within the emulsion layer is characterized

by the loci of po.nts of maximum grain density, vnich are parallel



planes a distar,4e d' apart, and specified by

(I- k2 + 0 1- 0 2w(.3

where H is an integer. It is convenient to carry out the calcula-

tions in a coordinate system where the interference planes are perpen-

dicular to the z" txis. If the x', y', z' system is our standard

reference coordinate system, then we define the x", y", z" coordinate

system by two coordinate rotations. First we rotate about the z'

axis by an angle € (given by equation 1.16), to obtain the xyz

coo-dinate system. rn this coordinate system, equation 1.53 is of the

form

(M 1 - m2 ) y + (n - n2) z + 0l 1 02 = 2wM . (l.54)

The x", y", z" system is then obtained by a rotation B about the

x axis, where

a - tan- (3T= ) (1.55)

In this coordinate system equation 1.53 is of the form

(n" - n") z " + 0 - a 2M (.56)
1 2 ~1 2 (-6

(the coordinate transformations and transformation equations for the

direction cosines are given in Appendiz !TI.) The above equation

specifies the planes of maximum grain density within the emulsion

layer for the special case where the two exposing fields are plane
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waves- If they are not plane wavea M~ I *d ibeing slowly viryiflg

functions of position) then equations 1.16, 1.55, and 1.56 are

applied at the particular location of interest within the emulsion

layer with the appropriate values of 2 and 1 2.*eing used.

1.4.5 Bragg Reflec.tion Condition

In this section we wish to determine the field scattered by

those grains which are associated with the periodicity defined by

equation 1.56 when the illumination field is a plane wave of the form

2r ro eii. d(-T

Equation 1.57 specifies the illumination field within the emulsion

layer, after refraction at the emulsion-air interface.

Ewch grain,-of zourse, -scatters-a-portion -of t-he-illumi --

nation wave in essentially all directions. We are only interested in

the particular case where the waves scattered by the grains under

consideration add in phase in a particular direction. This will occur

if the wavelength and direction of the illumination wave are such that

Bragg reflection from the planes of constant grain density occurs.

The Bragg reflection condition can be simply stated in terms of the

spherical coordinate 0"(of ER), the illumination wavelength Ar

and the distance d' between planes of maximum. grain density. It

is

NA
Cos a"w r (1.58)r 2d'

|5
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where N is an integer. If e" and A are such that the above
r r

equation is satisfied, then the waves scattered from the graii in the

planes z" m c + Md' will add in phase in the direction whose

spherical coordinates are

*e" " d (1.59)
d d

and

off - e (1.6o)
d r

where c is a constant and K Is an integer.

It is of interest to express d' in equation 1.58 in

terms of the spherical coordinates of the propagation vectors of the

two plane waves which generated the periodicity. It is straightfor-

ward to show that if

2

a cos-  4 1 . 2) (1.61)

then

- _____ (1.62)
do a2 sin (a/2)

Nov, as a consequence of our choice of the x", y", z" coordinate

system

of (01.U63)

1 2



and

It follows from equations 1.61, 1.63, and 1.64 that

i 2 " 1 2 (1.65)

and hence, using equations 1.58, 1.62, and 1.65, the Bragg reflection

condition becomes

NA NA
Cos A rCo 8, (1.66)r 1i-~ e --- o 2

Equation 1.66 expresses the conditions which are placed on the prop-

agation vector I of the illumination wave in terms of the twor

original illumination waves which generated the periodicity under con-

isderati --Aaimiar-equaton-exist-e-for-each-periodioity-term -in

equation 1.9. (It should be noted that there is in general a dif-

ferent x", y", z" coordinate system associated with each period-

icity.)

It is of interest to determine if there is a particular

r which will satisfy equation 1.66 for a significant number of

periodicity terms in equation 1.9. An examination of equation 1.9

shows that the terms which yield the virtual image in transmission

all have the propagation vector 0 in common, and the interferenceo

terms are all of the form of the interference term in equation 1.52.

.
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It follows from equation 1.66 that if the illumination wave

is the same as either of the two original waves, then equation 1.66 is

satisfied (vith 191 - 1 ). Furthermore, it follow from equations

1.59, 1,60. 1,63 and 1.64 that illumination by one of the two origInAl

vaves yields the other as the reflected wave. The phase factor Od

for the reflected vave is specified by requiring that the planes of

minimm intensity in the interference pattern generated by the illumina-

tion beam and the reflected beam coincide vith planes of maximm

grain density. For example, consider the interference term generated

by the reference beam and the jth signal wave. The recorded inter-

ference pattern is, from equation 1.56,

(not - no) Zoo 2w . (1.67)

When we illuminate vith the reference beam, the loci of points of

minimum electric field intensity ip given by

(ni - ) z"-0 -2(M+I) (1.68)0 ~d2

and hence

Od a 0w (1.69)

Thus, except for the unimportant constant phase factor -w , the phase

of the reflected vave equals that of the other original illumination

wave, and hence we can say that illumination of the periodicity by one

of the two waves which produced it yields a "reflected wave" vhose

direction and phase equals that of the other wave.
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X thus follows that when we illuminate the hologram with the

reference beam, Bragg reflection will result in reflected waves whose

directions and phases are the same as those of the original signal

beam, and hence a reconstruction (virtual Image) is produced.

1.5 csivarison of Transmission and Reflection Holoams

There are a number of fundamental differences between the two

types of holograms that warrant discussion here. First of all, while

the directions and phases of the "diffracted" or "reflected" fields are

determined by requiring that the individual scattered waves add in

phase, there is a basic difference in the way in which we "group terms"

in suming these scattered waves. In the case of the transmission

hologram the directions of the diffracted waves (I.e., the directions

in which the individual scattered waves add in phase) are determined

from the periodicities in the plane of the emulsion surface, and these

directions are expressed by what could be termed "generalized diffrac-

tion grating equations." On the other hand, in the case of reflection

holograms, the individual scattered waves add in phase when the Brag

reflection condition is satisfied with respect to the planes of constant

grain density within the emulsion layer.

It can be Immediately seen that with r*Ppect to the determina-

tion of the directions of the "diffracted" or "reflected" waves, the

variation of grain density with depth is of primary importance in the

case of the reflection hologram, but of only secondary importance in

transmission holograms of the type considered here. Indeed, we could
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let the emulsion thickness approach zero in a transmission hologram mid

still obtain a reconstruction, while this would result in the complete

disappearance of the reconstruction in the case of the reflection

hologram.

It was sea. in Section 1.3.4 that there were two directions

in which the waves scattered by the grains associated with a particular

periodicity of the transmission hologram add in phase. This In

analogous to the two first orders produced by a diffraction grating,

and in the case of the transmission hologram, these two directions

correspond to the real and virtual Images. The situation is quite

different in the case of the reflection hologram, where, as was seen

in Section 1.14.5, there is only a single direction in which the

scattered waves from a particular periodicity add in phase. Thus, only

a single image is formed by a reflection hologram, and as was seen in

Section 1.4.5, when the Illumination wave is the reference beam, the

single image is the virtual image. This does not, however, preclude

the formation of a real Image. Denisynk (10,11) explains the condi-

tions placed on the exposing and illumination bean that must be

satisfied in order for the single reconstructed imge to be real.

Perhaps the most striking difference between the two types of

hologrm is the difference in reconstruotion* for the case when the

illumination wave has a vide range of spectral components (the

geometrical characteristics being the saw as that of the reference

beam). In the case of the transmission hologrea, each spectral compon-

ent yields diffracted waves whose directions are specified by equations
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functiO, of A. and thus each wavelength will yield an image diaplaced

some amoun% in angle with respect to the images produced by the other

spectrel components in the illumination beam. The And result is a

blurred image, the blurring becoming worse as the spectral range of the

illumination beam is increased.

The situation is quite different in the case of the reflection

hologram, as the Bragg reflection condition (equation 1.66) must be

satisfied in order to obtain any reconstruction. If the illumination

beam hbs the geometrical characteristics of the reference beam but has

a range of spectral components, only those wavelengths which satisfy

equation 1.66 will yield scattered waves which will add in phase, and

hence give a reconstruction. The other spectral compicnents do not pro-

duce tnas and hence do not-degrade-the-recotructed-image,- Thus-,- one---

can illuminate a reflection hologram with "white light" and still obtain

a reconstruction of reasonable quality.

There are a number of practical considerations that modify the

previous statements regarding reflection holograms. In practice, film

plates such as Kodak 649-f high resolution plates are used in making

either transmission or reflection holograms, and the emulsion layer is

typically 15p or less in thickness. in the case of the reflection

hologram this means that there will be only a limited number of inter-

ference planes contributing to the Brag reflection phenomena. The

radiation pattern or "array factor" associated wilh each periodicity in

the reflection hologram is thus much less directive than in the case of

m m e m m



the transmission hologram, where the periodicity is in the plane of the

emulsion surface and hence many more basic periods are included in the

diffracting structure. The result is that the reflection hologram will

yield a reconstruction over a band of wavelengths, this band being

narrower for thicker esulbilos. In addition there is much less sensi-

tivity to the angle of incidence of the illumination wave. An addition-

al consideration is the fact that emulsion shrinkage may occur during

processing of the film plate, and this viii result in the shifting of

the wavelength band for reconstruction of the reflection hologram to

shorter vavelengths. Experimental data as well as an analytical treat-

mnt of the wavelength sensitivity of reflection holograms can be

found in the works of Denisyuk (10,11) and Fleisher et al (27). Al-

though the authors of (27) don't specifically consider holograms,

their work is directly applicable and includes a worthwhile amount of

information concerning processing of high resolution film plates.

1.6 Summary and Discussion

The analytical description of the holographic process that

has beeni formulated in this chapter takes into account the three-

dimensional nature of the recording media by characterizing the emulsion

volume by the volume density of scattering particles, the grain density.

A general film response is allowed for by expressing the grain density

as a power series in R-', where I is the total electric field.

By expressing the exposing and illumination fields in the

form of a sum of plane or quasi-plane waves and neglecting multiple
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scattering we have been able to handle the problem of computing the

diffracted fields by using what could be termed a linear systems

approach. This involves computing the waves diffracted by the grains;

associated with each p*-riciltity term in the expression for the grain

density, and then summing (coherently) these waves to obtain the total

diffracted field. The problem of computing the diffracted field is thus

reduced to solving variations of the same basic prc'lem, that of com-

puting the direction, amplitude and phase of each of the two first-order

diffracted waves that are produced when a "volume diffraction grating"

is illumLinated with a plane wave. We solve this problem for the

general case, considering the directions and phases in this chapter and

the amplitudes in Chapter Four (for transmission holograms only).

It should be noted that we have been dealing with the values

of the fields in the immediate vicinity of the hologram plate and have

not considered the problem of relating the exposing and illumination

fields to the sources that generate them or the problem of computing the

diffracted field at some distant observation point. These problems can

be dealt with by utilizing Fresnel-Kirchhoff diffraction theory (as

discussed in Chapter Two) or perhaps by using some sort of geometrical

optics or raya tracing technique, as was done by Offner (14).

In general we shall deal primarily with the fields in the

vicinity of the hologram plate, except where we are considering a

specific problem where the field in some other region is of particular

interest, as is the case with Fourier transform holograms. We shall see



that a knowledge of the field in the vicinity of the hologrsm plate is

sufficient to provide the solutions of a number of problems which are

of interest.
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C(APTER TWO

TAISMITTANC E D&SCHIPTION OF WAVlFONr EECONSTRUCTION

2.1 Introduction

In this chupter we shall consider the transmittance descrip-

tion of wavefront reconstruction as developed by Gabor (5). We will

see that although the use cf the concept of amplitude transmittance be-

comes questionable as the spatial frequencies involved become high

(i.e., when the emulsion must be regarded as "thi"k"), the analytical

formulation still remains valid. Furthermore, we will show that with

respect to computing the directions and phases of the diffracted waves

the transmittance approach and the approach formulated in Chapter One

are equivalent. We will then compare Jhe two approaches.

2.2 Transmittance Approach

The term "transmittance approach" as used here refers to a

particular formulation of the problem of determining the diffracted

field produced when the hologram is illuminated. The diffracted field

is to be specified in terms of the initial exposing fields, the film

characteristics, and the illumination field. The f4elds referred to

are spec.'fied in the immediate vicinity of the film plate, and the

problem of r'elating the expcsing field to the sources which generate

it and the problem of computing the diffracted field at some distant

observation point are considered as separate problems.
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2.2.1 Analytical Formulation

T-he following formulation is due to Gabor (5) and has been

successulJly used by many researchers to treat many different problems

in holography. Letting the z a 0 plane coincide with the ourface of

the film emulsion layer, the exposing field U Is taken to be of the

-iWt
form (e-  suppressed)

U(x,y) = UJ(X,y) + U2 (x,Y) (2.1)

where U and U2  are complex scalar quatities which we identify as

the reference beam and signal beam respectively. It is convenient to

write

ig~l(x,y)

UI(x,y) w AI(x,y) e (2.2)

and i* 2 (x,y)

u2(x,y) - A2 (x,y) e (2.3)

where A,, 11, A2 and *2 are real functions.

In the recording process the amplitude transmittance T of

the developed film emulsion layer is taken as the quantity which

specifies the characteristice of the developed film plate which are of

interest. It is generally assumed that T is real and can be found in

terms of the intensity UUO from the characteristic curve for the

film. Furthermore, if one assumes that the amplitudes of U and

U 2 (and the exposure time) are chosen so as to have the exposure be in

the "linear" range of the characteristic curve, then the amplitude



transmittance T can be expressed ii. the form

b + (Lf*) r! 2
0

where b ia a constant and I is the "gamma" of the film. It is
0

convenient to take r- 2 as this simplifies the algebra. This can be

justified by noting that if we make the amplitude of the reference beam

much greater than that of the signal beam, (LiJ*)r/ 2  can be expanded

in z binomial series, the first order terms corresponding to the case

r/2 - 1. That is, writing

r/ 2 2 r
(UU1)r1  [A + A2 + 2A A C06

1 2 1 2 cos( 1 - 2 )
/

or

A2  2A
(UU,)A/2 i + 2  2 r/2 (25)-A 2l - ' AT 1 o 1 -2 ] (')

___ and assuing A~/A1  1 e
and assuming A2/ i < we see

2r 2 AI 2 +A2

(UU*) 2 
' A 2 (l + - cos (i - 2)]

A2A 1 1 2A1

or

(w,) -  A1 + A2  A IA 2Co(4 I  2)  (2.6)

Thus, taking r - 2 and auppressing the constant bo, the amplitude

transmittance of the hologram plate is of the form

2 2 i(u2 - 0i)  -i(@2 " @i)

T a A1 + A2 1 2 e 1 A2 e (2.7
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Tlhuu, ny definitionu, if we illminatt the hologram ut.h a wave U

the transmitted wave U will be given by

UT L U

Writing

U3 0 A3e (2.9)

equation 2.8 becomes, using equation 2.7,

2 2 i(g2 - ,i 3) "(@ 2 " g3

U a (A12 + A 2) A e 4 * A A A e 1(,2 -01 +3+A A A e1 -C4

(2.10)

The first term is the zeroth order term, the second term is the virtual

image term and the third term is the real image term.

2,2.2 Variations with Depth

The chicc h &wupj1'iLude transmittance as the quantity

which characterizes the developed film emulsion layer implies that we

neglect or "average out" any variations in the z directions. This

is clearly a good approximation when the thickness of the emulsion

layer is considerably Its than the period of the highest spatial

frequency component in UUO . However, It is not a good approximation

in those cares where high spatial frequencies are involved, such as with

the two-beam method (2) which io extensively used because it provides an

angular separaticn of the images. For example, the emulsion layer on

typical high resolution film plates used in holography may be from 3

to 15 microns tlick, and from equation 1.62 it is seen that with a
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Vavelength. nf f ,'NAA' and ar ut+(iL :'rf betwrpn two platie wavg-, the

perlod of the resultihg ir t rferernv phtterr will be Of the urder of

5 mi, ro's. One could go " ad and menLiun exampies wnere the liUf4:#ii:

fringe plaiwe Fre inclined with respect to the z axis and where

averaging over z would "wwih out" Lhe inturferenice pattern. In

such cases the strict interpretation of Y in equation 2.6 as the

actual amplitude transmittance would clearly rule out the validity of

this approach. However, it will be seen shor .ly that equation 1.8 is

valid even in such cases, but the interpretation of T must be dif-

ferent.

This should not be too surprising as it was seen in Chapter

One that the directions and phases cf the "diffracted" waves are deter-

mined by the periodicity in the z a 0 plane. In the expression for

T as given by equations 2.h or 2.7, it is the fields in the z = 0

-pano tbat are used, and It- is prec-isely the faet that the Yariations

with z are not included that allows the use of equation 2.8 in these

cases where the concept of amplitude transmittance breaks duwn.

2.2.3 Equivalence of *he Scatterirg Theory Aaroach and tO Trans-

mittance Appruuch

In this section we shull show that with rvsp,. tu computinotg

the directions and phases of the diffracted waves the transmitta.ce

approach as given by equations 2.7 and 2.8 is tquivalerlt to the approact,

giver in Chapter Ont, for transmission hologrur.. in particultr we shall

consider the special case where U , U , and U are plat. wavts , ,i
1 ,i

we shall show that for this case equations ,.( and ".6 yitd the



fnr do-t m ni -r# t the dir ctto4 nd ph~

Hence, 1"t tit tPike

U2  A e (2.12)

unt

i R 3 + 3)
U- Ae (2.13)
3 3

where A, A., and A3  are constants.

It is convenient to express the quantities k1 * k2'r and K3

in the x,y,z coordinate Rystem defined as in Section 1.3.3 (equation

1.16) so that the x direction cosines of iI and R2 are equal

(the z = 0 plane coinciding vith the emulsion surface). Thus, in

the -- 0 plane

I ,x + reY) (2.14)
11 1~o

2t~ + a2y)
21

'  ~ - (L x *m~ ) (2.16)
3

Let us consider the second term in equation 2.10, which i: the term

which corretponds to the virtual i.mae if U1 is identical as the

reference beam. It is clear that since we have taken Ul, U2 , and
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will . . tiAbIc w . h vse. IThus the rf!ct,ur v - k +  will be
3

uf te for , in Le z 0 plant-,

a t 2 and are specified by equations 2.1h, 2.15, and .i6,

hence (recalling i m"
)

2w ,2, ~ +~0
--(£x .1, mgb) + - x + m3Y) +..(M., M ml + 0 0 .- + 03

4rn 3 3

(2.18)

If this equatic-n is to be valid for all values of x and y, the x

and y cciefficlezit' mu-t be equal That is

I4-. (.19)

m- m = --(m - mI9 (k.2

Now equations 2.19 and 2.20 are identical to the equatlos derived in

Section 1.3.3 that specify the directions of the diffracted waves

which occur when a particular periodicity is illuminrited by t plat-w

wave. That is, equation '.1.9 is identical to vquatL:r1 .2t ar"'

equation 2.20 is identical Lu equation 1.Th for t..e case I:I = I

(virtual image). Similar results are obtaii.?d for the rufal image term

in equation 2.10, the only dlfference being a chanhge of sigt of the
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right hand side of equation 2.19 which correapond- to the case where

the opposite sign is taken in equation 1.38.

The phase factor for the virtual imae is fvund t' Le

while the phase factor 0 for the recl imzae is found to be

0 03 *0 2 (2.2 )

Licept for the abrence of the constant factor -v , equations 2.21

and 2.22 are Identlcal to equation 1.36. It was seen in Secticn

l.3.4 that the factor of -r Is a consequence of the boundary con-

ditions requiring that the totai E field be e minivmm in a region of

maximum grain deneity, We can put chls in. the aonext, of the trane-

mittance theory by noting t'hat in Section 1.3.4 we -re dealing. with a

"negative." If we were to makc a "positivie" (astang 1-hat the

spatial frequency is sufficiently low that it is meazlnl'uif to speak

in r th terms) tnen we wouAld in effect shift the friage pattern by

1/2 period and the factor of -w would no longer be present.

We niave u(Aa6&Jtk t , for 1ne s-pecial case of n.ane

waves, that with respect to computing the directions and haaes of

the diffracted waves, the traesmittance approach .nd the approach

described in Chapter One are equivalent. It Is cleetr that this equiv-

alence will aiso hold when the fields are of the form of a sum of

plane or quasi-plmne wves, or when the ?ields can be expressed as a

contintuou distribvtion of ouch wave&.
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Having demonstrated the equivalence cf the two approaches with

respect t,. the directons and phase.s of the diffrarte waves, it I'm

logicml to ack w.ether any such euivmlrncr exlstt vtth 'rsct to th"

azplitudeu of the diffracted waves. The furmuLation tof the analysis

as given in Chapter One was done no As to take into account the entire

emulsion layer. Using this formulation, the problem of predicting the

reconstruction efficiency and the distribution of amplitude#) in the

diffracted waves will be dealt with in Chapter Four. The transmittance

approach, as outlined in Se(tion 2.2.1, ices not take into 3ccount the

entire emulsion layer, but instead deals onlly with the fields in the.e

z a C plane. Thus, we would expect that the two approaches should

yield different predictions when the emulsion is "thick' (i.e., high

spatial frequencies, with period comparable to the emulsion thickness)

but should agree in 'the limit as the ratio of emulsion thickness tu

minimum fringe spacing approaches zero.

This can be seen to be the case as follov: In the scattor-

ing theory approach the grain density is taken to be the quantity

which specifies the developed film emulsion layer. Any particular

diffracted wave is identified as being the result of coherent sc&tter-

ing by a certain number of grains within the emulsion layer which are

associated with a particular periodicity term in equation 1.9. The

amplitude of this diffracted wave is taken to be proportional to the

amplitude of the illumination wave and proportional to the total number

of grains N associated with the corresponoing periodicity term in

equatLun 1.9. Examination of the periodicity terms in equation 1.9
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which yield either the real or virtual images shows that N is prop-

ortional to the product of the amplitudes of the signal beam acid re-

ference beam. in terms of the example used in '.m h.jrst part of this

section (where the fields are given by equatioci 2.11, 2.12 and 2.13),

this means that according to the scattering theory approach, the am-.

plitude of the diffracted waves (real or virtual images) will be prop-

ortional to AI A A , just as is predicted by the transmittance

approach, as can be seen from equation 2.10. However, the constant

of proportionality for the real and virtual images is the same accord-.

ing to the transmittance approach but may be different according to

the scattering theory approach. In fact, this "jroportionality con-

stant" is not a constant at all, but a factor which is a function of

the illumination wave geometry, emulsion characteristics, and other

factors as discussed in Chapter Four. It will be shown in Chapter Four

that this factor may differ by orders of magnitude between the real

and-virtual -image.- These-differences- re-due tothedfferent- con-

ditions fcr having the fields scattered by the grains In the different

planes z z constant add in phase, In the limiting case where the

emulsion thickness goes to zero this effect clearly becomes unimportant

and the two approaches yield the same result. The same conclusion is

reached in the case where the emulsion thickness remains appreciable,

but where the spatial frequencies decrease to the poiLt where the

ratio of emulsion thickness to minimum fri.ge speAoing approaches zero.

In this case angular separation of the two images is sufficiently small

and the "width" of the orientation sensitivity cur'e (see Chapter Four)
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is 8sfficientiy large that there is no appreciable difference in the

amplitudes ef the two images.

2.,3 Corgparison of the TwQ Approaches

As a bals of comparison of the two approaches, we shall

consider the range of applicability of the two approaches and the ease

with which calc ations can be made using them. The concept of the

amplitude transmittance was Plearly justified in the early work of

Gabor and others where the spatial frequencies were low. The analytic 1

formulation of this approach has been shown to remain valid even for

high spatial frequencies, but we have seen in such a case that the

interpretation of the quantity T (as given by equation 2.4 or 2.7)

as the amplitude transmittance may not be correct. Instead, we must

view T as specifying the periodicities in the plane of the emulsion

surface.

In comparison, the formulation given in Chapter One takes

into account the entire volume of the emulsion layer, and allows, in

a very general way, the treatment of both transmission and reflection

holograms. By considering the coherent scattering by the grains within

the emulsion layer we were able to show that the directions and phases

of the diffracted waves are specified by the periodicities within the

emulsion layer. In the case of the transmission hologram we saw that

the directions and phases of the diffracted waves are specified by the

periodicities in the plane of the emulsion surface. This verifies in

physical terms the validity of the application of the transmittance
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approach in those cases involving high spatial frequencies.

In addition, the formulation given in Chapter One provides a

convenient basis for the investigation of the dependence of the recon-

struction efficiency on the film characteristics and processing pro-

cedures as well as for the determination of the relative amplitudes

of the diffracted waves. The two methods, as we have seen above, yield

similar predictions for the amplitudes of the diffracted waves when

the ratio of emulsion thickness to minimum fringe spacing is small.

However, when this is not the case, tte approach of Chapter One is

clearly the better of the two methods. If the problem is not one of

computing the relative amplitudes of the waves in the two images, but

rather that of computing the relative amplitudes of the waves asso-

ciated with one of the images (say the virtual image, with the illumi-

nation beam being the reference beam), then the transmittance approach

May bet atisfator3L a riatronaS ihe "proportADoMlty 'nst ant"

between waves in the same image may be small.

We have seen that with respect to calculations involving the

directions and phases of the diffracted waves, the two methods are

equivalent. In the scattering theory approach, the fields at the film

plate are assumed to be in the form .A a sum of quasi-plane waves. The

diffracted field is then given as a sum of such waves, where the Airec-

tion and phase of each wave at each point of the film plate is computed

according to the formalism developed in Chapter One. In the trans-

mittance approach, on the other hand, the exposing and illumination

fields are written in a very simple form (equations 2.2, 2.3 and 2.9)
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and the diffracted field is found using the simple relationship given

by equation 2.8 or 2.10.

It is often the caae, however, that part of the over-all

problem is that of relating the exposing fields to the sources which

generate them and computing the diffracted field at some distant ob-

servation point when the hologram is illuminated. Then, depending on

the problem under consideration, one or the other of the two methods

may be more useful. For example, consider the case where the exposing

fields consist of a well defined reference beam plus the light scatter-

ed from the surface of a diffusely reflecting object. It would clearly

be quite difficult to specify A2 (x,y) and * 2 (x,y) in equation 2.3.

On the other hand, the scattered field could be represented as arising

from a number of point sources distributed over the surface of the

object, and thus would be of the form of the field given by equation

1.4. The diffracted field could then be computed in a straightfor-

ward (but lengthy) manner for any arbitrary illumination field which

can be put in the form of a sum of quesi-plane waves.

In contrast, an example where the transmittance formulation

is most useful would be for the case where the exposing field consists

of the light diffracted by a two-dimensional transparency plus a plane

or spherical wave reference beam. Fresnel-Kirchhoff diffraction theory

could then be used both for specifying the exposing field at the film

plate and for computing the field at some observation point when the

hologram is illuminated. These calculations can be put in transform

language and discussed within the framework of communication theory (2).

5
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Cs.lculations of these types, using the transmittance formulation, have

formed the basis of the majority of hologram investigations thus far.

We shall have occasion to use both approaches in the folloving chapter.

Finally, we note that what might prove to be the o t useful

apect of the approach developed In Chapter One is that it allows us

to gain a .,od deal of insight into the holographic proess by examin-

ing in detail a very simple type of hologram, the holographic diffrac-

tion grating, formed by recording an interference pattern which is

generated by two plane waves.
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CHAPTER THREE

MULTIPLE WAVEYOT REFERECE BEAM HOLOGRAPHY - GHOST IMAGING

3.1 Introduction

The concept or multiple reference beam holography or 'ghost

imaging" as used here refers to the case where the reference beam is

no longer a Aimple, well-defined wave (such as a plane or sp~Aerical

wave), but instead consists of a discrete sum or continuous distri-

bution of such waves. In particular, these waves may arise from a

portion of the object itself.

The first investigation of such a case was made by P. J.

van Heerden who, in a paper developing the theory of the intensity

filter (12), predicted that when a planar Fourier transform hologram

(or "intensity filter") ii Illuminated witn a portion of the original

exposing field, a reconstruction of the remainder of the exposing

field Is obtained. In the optical system considered by van Heerden,

this reconstructed field is brought to a focus to form an image of the

original transparency, and this image was referred to as a "ghost

image."

The first experimental observation of such a "ghost image"

appears to have been made by Stroke et al (35), who were investigat-

ing the effect of "extended" sources c toe resolution attainable in

Fourier transform holography. This was followed shortly by a series

of experiments by Collier and Pennington (36,37), who verified van

Heerden's original prediction that a translation of the portion of

As



the object generating the "reference beam" during the illuminatlon

results in a corresponding tra~nlation of the ghost image, which re-

mains in register with the image of the object fragment. They also

presented experimental results shoving the formation of a hoest image

with a diffusely illuminated transparency as well aS with a diffuae!v

reflecting object. In the latter case, they observed that reposition-

4ng of the holmaram nlate was crltiral, and that things had *n re-

main as they were during the exposure in order to obtain a recon-

struction of the "ghost image."

In this chapter ,e shall be interested in examining the

mechanism of the formatio)n of the ghost image (i.e., a reconstruction

of the signal beam when a complicated re.'erence beam is used), both

from the point of view taken in Chapter ')ne and from the point of

view taken in Chapter Two. We shall examine the effect of errors in

repositioning of the hologram plate (the "translational sensitivity")

as well as the background noinehat- ariaes-when -the -refernee-beam- - -- -

is no longer a single vavefront.

We shall begin by considering the case where the reference

beam is of the form of a sum of plane or quasi-plane waves, such as

would arise, for example, if the reference beam was generated by the

light from a diffusely reflected object. After computing the effect

of repositioning errors and background noise, we shall describe an

experiment in which the power in the reconstructed signal beam is

measured as a function of repositioning error, or translation of the

hologram from its original position. The experimental results are
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then compared with the results obtained by applying the analysis pre-

sented here.

We shall then go on ti consl'er ghost Imaging with Fourier

transform holograma, and Investigate the translationfAl sensitivity

and background noise both for plana :zve Lilumination (of the trans-

pnren=;) an1 for diffuse illumination.

3.2 Hologramn with tn Wavefront Heference Beams

In this section we shall consider the case where the ref-

erence beam is more complex than the simple single wavefront reference

beam considered prevLuusly, as is the case In "ghost imaging" or holo-

graphy with "extended sources". We shall use the approach outlined in

Chapter One, namely where we treat the exposing fields as sums of

locally plane waves. This approach is in principle essentially that

used by van Heerden (13) in his treatment of ghost Imaging in his paper

on information storage in three-dimensional media, the basic difference

being that we shall allow for a (slow) variation of the propagation

vectors across the film plate.

We shall be concerned with the case where the illumination

beam is the reference beam, and shall examine in detail thie effects of

slight changes in the reference be am (such us caused by an err,.. "n

repositiuning the film plate). Furthermore, we will consider the nature

of the reconstructed field kvirtual image) i-' examine "noise" or

"distortion" terms which generally arise when a multiple wave reference

beam is used. We shall treat this "background noise" both from the

point of view taken in Chapter One and from the "transmittance" point

l E l i | E l | l E l i | l l i l i



of view, and will show that the results are equivalent, as is to be

expected.

3._,_- Recording Process

We are no. interested in the c&4* wh re the "referenee beam"

is no longer a single plane or spherical wave but is rather a mum of

such waves. The field at the film plate is still of the form of equa-

Lion 1,. " the first P terms are identified as the reference

beam and the last M-P terms as the signal beam. The field at the film

plate is thus written in the form (e-i t suppressed)

p e (k.~0 j H i(i .0)m
I E +e . (3.1.)

Jul aP+l

WithE in this form the expression for the grain density D given

by equation 1.9 becomes

P P
V a C 0 C I I Cj eo[st( 4 -. ).; 0 -0 .]

Jul kul

M N
+ C, I I C cosL(in' k Is )i + 0 n 0

n=P+l mMP+l nn

P H
+ 2c 1 i cjn cos((J-n)' .0 -+ Jn
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* higher order terw- (3.2)

Since we will be illuminating the hologram with the referene" beam (or

a beam very similar to it) we shall be primarily interested in th, 'Pt

term in equatin 3.1 which ccrreascnd tc iatnrferena hettt"n rfer

ence beam waves and signal beam waves, These terms are thc:-L # includei "

in the third double sum in equation 3.2. The first 'nd second doluble

aunmt in equation 3.2 correspond to interference between the various

reference cew t , e var.,us..J1 J Li w respectiv,,ly.

We will assume that the geometry of the problem in such that the d'.f-

fructed waves produced when these periodicities are illuminated with

the reference beam are either separated in angle from the reconstructed

signal beam or else are sufficiently woak (due to unfav:'rable illumina-

tion conditions) such that they may be neglected.

Thus, under these condi,.ions, we shall -.rite

D - D +D (33)
v r

where D includes those terms which are significant :n the recon-

struction process when the illumination beam is the reference beam and

hence is given by

P M
Dv = 2C, I I C cos[( - )1 + 0 - 0 (3.4)

J1 n-PFl J n j n

and D represents the remaining terms.r
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322P econut ruc tion or t he giimoa Beaus

W,, are interested it the case where tbt iilufi~nation beam is

the reference bewa, and is thus given tu

3-.1~ (3.5)

We viii consider only one of the tvo firsit-order diffracted waves pro-

duced when each periodicity term in equation 1.4 is illuminated by one

of the reference beam waves of equation 3.. Theike will correspond to

the virtual imago. The other first-order diffracted waves correspond

to the real image which is assumed to be separated from the virtual

image as veil as being considerably weaker, and thus viii be neglected.

Hence there will be P (M-P) diffracted waves which must be

considered. P(M-P) of theme waves contribute to the reconstruction of

the signal beam, and the remaining P(P-1)(M-P) waves constitute aL

background noise.

Let us consider those waves that contribute to the reconstruc-

tion of the signal beam, leaving the others to be considered in detai!

in Section 3.2.4. Thus, let us consider the jth illumination wave in

equation 3.5,

1r e j (3.6)

We recall from Chapter One that when the illumination wave has the same

and 0 as one of t' two initial waves which yielded the
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interferencio term under consideration, then one of the two first-order

diffracted waves from this perindi1ty hs ltg proativr vector x

and phav 1A equal to vi,, or the other were texcept for a con~tarnt

phase ftiator zf -, ), Thus the terms

M
2c. ; Cm Cos[(; - + +C - 0)

L n*P+l

yield the dif racted waves

4 i(i n. + 0 n V)'j"2C, IP4 i P(jE Rn e n
~d r2C UP 3 (4E1 J1 fl(7

when the illumination wvave iu given by equation 3.6. In writing equa-

tion 3.7 we rzplaced C by L .E (equation 1.9b) and made use of
Jnn

the factor F defined ina Chapter One, and in addition we neglected the

diffracted waves corresponding-to the re . ima " dltscusaed-pr-e-

viouBly. If we now consider all the illumination waves as given by

equation 3.5, then we obtain

id a ! d:j (3.8)

or

P' n i rn + - W)
E a 2 1 Cjn(E J ) e (3.9)

Jal nuP+l n

We shall assume that

C1 jn (pj , n) -. CE jj n (i.O)
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and hence equation 3.9 becomes

!P

Ed SC Y ) j (3 .1)

Upon qOrparing equaticn 3.11 and 3.1 we see that equation 3.11 mre-

sents a reconstruction of the signal beam, there being P terms con-

tributing to each wave in the signal beam.

..3Translation Sensitivit

Equation 3.11 hov that 'the reconstruction of each signal

wave front consintz of a superposition oi' terms, which add in phase

provided that the hologram film plate is ill,minated by the "reference

be=.' as given by equation 3.5. In general this requires that the

hologram be repositioned in exactly the same place where it was during

the exposure of the hologram, and that the hologram setup remain un-

changed. If this repositioning is not done accurately, the result will

be the appearance of a phase factor e under the summation sign in

equation 3.1.1. This can, aa was observed by van Heerden (3), result

in the disappearance if the reconstruction, as the sum may then average

out to zero.

To put tkese statements on a more quantitative basis, :t us

consider a translation of the developed hologram film plate by an

amount r in the x' ,y' plane. We shall consider the reconstruction

of one of the original signal waves, which is of the fore
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m 0 , . 0 -11>)

In the absence of kny translation, the jth wavefront of the illumina-

tion reference beam interacts with the periodicity term

Cjm cos[( -im)r; + 0- (3.i)

to produce a diffracted wave of the x'orm of equation 3.12. The effect

of the tran3lation of the film plate is to make the phase factor 0 m a

function of j

0+m + 0mg (3.l4)

The phase factor may be rpecified by requiring, ar before, that

the interference pattern genera. by the transmitted portion o the

-- il-l-umination wave and thediffrtc, d-wave of interest match up with the

recorded interference pattern corresponding to equation 3.13. This is

done in Appendix III. A much easier way of specifying the phase factor

0 mi can be found by noting that a translation of the film plate is

equivalent to an equal and opposite translation of both the source and

the observer (or detector). Since we are considering each of the

wavefronts to be locally a plane wave, the specificatioi. of 0 Jm at

any particular point on the film plate reduces to the problem considered

by van Heerden (13), who p.iints out that a displacement of the source

by an amount io introduces a phase shift of kr 0 to a plane wave

0 i i i 0 i ii i
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with propagation vector k Since we are considering the source and

observer to be fixed, the total phase shift the observer sees in the

diffracted wave £ is

0 (Jm N - M)'; 0 (3.15)

where k is the wave vector of the illu-ination wave and r0  is the

displacement of the film plate. Thus, equation 3.11 becomes

P M i(k - ).r i(' + 0 - -wt)E c r E e J e (3.16)
Jul mMP+1

We observe that the factor

ik .r

can be removed from under the summaton -over , anid thuseachf the

reconstructed signal beam waves is multiplied by the same factor n

where

1- [ E e (3.17)
Jul

It is clear that if the E are essentially equal and if the k, vary
J V

sufficiently such that k ranges ove." 0 * 2,* then n will be

essentially zero and we will have no reconstruction.

We should bear in mind that r is a constant vector and
0

that the k may be functions of position, with the result that n

J!
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may vary over the film plate. Let us conrider the case where

r Ax, (.x

then

P i-' L, AX,
n E e (3.19)

Jul

An estimate of the translation Ax' required -to make n - 0 is found
v

by assuming that the Ej are equal and t~e di rection cosines ' are

uniformly distributed over the range Lt to 11 Then

A(3.20)
ax mn

We will have occasion to apply the above tquat:on as well as equation

3.19 in Section 3.3, and we shall see that these equations yield pre-

dictions that are in good agreement with txperiental results.

3.2.4 Background Noise

We view as background noise all diffracted waves other than

those corresponding to a reconstruction O the signal beam as given by

equation 3.11, which are not separated in angle from the signtl be.

By separated in angle we mean having a prrpaga1iton vector k whose

direction is significantly different frog thosie of the signal waves.

We will retain the assumption made in Section 3.2.2 that the geometry

of the experiment is such that we can neglect the waves diffracted from
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all periodicities ass.....ated with the terms D in equation 3.3,

either because they are separated in angle from the signal beam or be-

cause their amplitude is suffieientlV snal.

This leaves the periodicity term given in equation 3.4. We

have seen that these terms give rise to a reconstruction of the origi-

nal signal beam when the hologram in illuminated with the reference

beam. There are P(M-P) periodicity terms in equation 3.4, where P

and M-P are the number of waves in the reference and signal beams,

respectively. When the hologram is illuminated with the P waves of

the reference beam, each periodicity will yield P diffracted waves

(we are only considering one of the two first order diffracted waves),

but only one of theme P waves contributes to the reconstruction of

the signal beam. The other P-1 waves constitute a background noise,

and thus the ratio of signal terms to noise terms is

N
_A _ 1 (3.21)

n  P-l

The noise waves can be computed in a straightforward manner in the same

way that the signal field is computed, by using equations 1.16, 1.26,

1.28 and 1.34.

The fact that the reconstructed signal beam is accompanied by

a background noise can also be seen from the transmittance approach. We

recall that equation 2.10 specified the transmitted field in the

z' a 0+ plane, in terms of the exposing and illumination fields. In

applying this equation, we shall find it convenient to write the
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reference beam U and signal beam U in the form of a sum of plane

waves. Thus we write

U -  A e (3.22)

and

U2  B e (3.23)
k P+1 k

where the A and Bk  are real constants and the and are

of the form

Lx + mty + . (3.24)

Since we are interested in the cave where the illumination beam is the

reference beam, we set

U =U . (3.25)

We recall from Section 2.2.3 that an arbitrary field can be represented

as a continuous spectrum of plane waves. We can view our choice of

writing the reference beam and signal beam as discre'..e sums of plane

waves as either a restriction to fields of this form or as an approxi-

mation to the more general case.

Now a,:cording to equation 2.10, the transmitted field UT

is given by

U UI(UU + UU ) + U2 U +UUU . (3.26)
T 1 1 1 22 1 2 11 2
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We are interested in the last term in the above equation, which corres-

ponds to the reconstruct.ion of the signal beam. N,,'

U U *jkc eU, e k (3-27)
J =l mtP+l

and we see that if the signal beam U2  is to be reconstructed without

distortion or background noise we must have P a 1 , which corresponds

to the case where we have a single plane wave for the reference beam.

We observe that we can write equation 3.27 in the forr

P ~ e(J k C ~2 1

U! J U2 - A, • B t, e jA 3 5 B 1 CL
Jl L £P+I J+l L=P*
kMl (3.28)
a ~i

The first group of terms corresponds to the background noise mentioned

previouslyy-vhile the second- group-eorrespcndn-to -t-hee-ren-truetin-of-

the signal beam.

It is of interest to compare the power in the signal beam to

that in the noise beam. A convenient measure is the signal to noise

ratio S/N , which is seen from equation 3.28 to be of the form (the

factors U2 U cancelling)2 2P 2

S/N Jul (3-29)

j( A jA ke I A A. e k)

j~k jok
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We observe that we can write thc denominator N in the form

N A AkA A (.30)
JkLM

It in of interest to write out separately those terms in equation 3.30

for which the exponent is zero. This occurs when the j a t and

k v m (the cases where j a k and R a m not being allowed). There

2are P such terms, and we can write N in the form

N-( 212 . AiAAL * e - - *
N. A,) + A AjA e M e) (3.31)

Jul Jkm
jak
J#L
jt
LgOM
lom

We recall from equation 3.24 that the t are functions of position on

the film plate. It is clear that if the propagation vectors i and or

phase factors have sufficient variations that at any given observa-

tion point (x,y) the 'P will vary over the range 0 - 2w , and hence

the contribution of the second factor in equation 3.31 can be neglected,

as it will essentially average out to zero. In this case the signal to

noise ratio is unity:

S/N M 1 . (3.32)

This can be interpreted in a simple way by recalling that there are P

waves that contribute the reconstruction of each of the signal beam

waves. These waveb add in phase so that the power in each of these

F £ m m nm m
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signal waves goes as P. On the other hand there are P(P-1) corres-

ponding nois veve3. but these do-It add in phase and hence their pow.r

goes as P(P-l) , with the result that the signal to noise ration goes

as

P2
P(P-l)

for large P

3.3 Translation Sensitivity Experiment

In this bection we shall describe an experiment where the

total power in the reconstructed signal beam is measured a" a function

of the error in repositioning the hologram plate. The analysis of

Section 3.2.3 is applied to compute the quantity being measured and ex-

perimental and computed values are compared, and found to be in excel-

lent agreement.

3.3.1 Description and Analysis of the Experiment

The experiment consists of taking a hologram using a multiple

wave reference beam, and then measuring the total pover in the recon-

structed signal bea.i as a function of the displacement of the developed

film plate from the position it occupied during the exposure of the

hologram. Por reasons of experimental convenience, the signal beam was

taken to be a single converging wave. This corresponds to the special

case of M a P + 1 in equation 3.1. It follows from equation 3.16 that

the reconstruction of each vavefront in the signal beam can be
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conmidered separately with respect tu the effe. :t of plate treasIlation,

and thus there is no loss of generality incurred by thiz chtive of the

aigitl beam.

The reference beam is produved by illuminating a diffusely re-

flecting surface with a collimated laser beam, the scattered light form-

Ing the reference beam. The reference beam Is thus of the form given

in equation ,.

The actual geometry used in the experiment iu zhown in Figure

3.1. The converging wave which forms the signal beam is incident on

the film plate at an angle of incidence of 240, and comes to a focus

behind the film plate at (x',y',z') a (-1i", 0, -24.7") , It exposes

an elliptically shaped area centered at the origin. A converging beam

was used because it provides a convenient means for the measurement of

the total power in the reconstruction of the signal beam, and for the

di.Criminttion against bac-ground -jidse-.--- -

The reference beam is provided by the light scattered from a

magnesium oxide powder layer sandwiched between two microscope slides.

The magnesium oxide layer is illuminated by the laser beam (which was

divided into two beams by a beam splitter) which is passed through a

3/32" diameter aperture before striking the oxide layer at an angle of

260 301 as shown in Figure 3.1. The reference beam can thus be assumed

to arise from a large number of point sources distributed over an

elliptically shaped area in the x' a -1/2 inch plane. The amplitude of

each point source depends on the variation in amplitude across the cross

section of the illuminating beam, and will be dealt with later when

t
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required in the calculatiaoni. The point sources have random phase*.

The light scattered by the reference beam source points will

illuminate osat or th fift pla t for x' -, i/2 , but the only area of

interest is that area illuminated by both signal and reference beams

tiijee this is the only area which will yield a reconstruction. This

consists of the ellIptically shaped area which is illuminated by the

sign~al beam. The displacement Ax' in the x' direction that the de-

v-loped hologram film plate must be moved in order to have the recon-

otruction vanish is a function of' the observation point in the hologram

area. That is, if we were to observe the reconstruction through a

small aperture placed at some observation point (x1,y*,0) in the

hologram area, the value of Axv will vary with (x',y',O) In this

particular problem it is the total power in the re::onstruction thet is

measured, which is the sum of the power passing through each element of

-area -f the region which constitutes the -ho-logram.

An estimate of the Ax' can be obtained by neglecting theV

variation of the y' direction and applying equation 3.20. Thus, to

obtain an estimate of' Ax' (max) , equation 3.20 is applied to the case
v

where the source points which generate the reference beam all lie along

the line between (-.5. 0, .948) and (-.5, 0, 1.052). The observation

point which yields the maximum value of Ax' is at (-.25, 0, 0).v

The angles between the x1 axis and the lines which Join the

two extremities of the source line and the observation point Kre

- tan 750 141 (3.33)
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tanI 1 .0LQ2~ 76'0 38' (.34)

and hence

£' max a COS(75* 1h') a .25488 (3.35)

L' min a zos(76' 38') a .23118 . (3.36)

Using the above values in equation 3.20, with X = .6328P , we find as

an estimate for AxIv

,W 26.7 microns (3.37)
v

As will be seen later, this estimate is in quite good agreement with

experimental measurements.

The quantity which is measured in the ixperiment is the tota!

power Pn ir. the reconstructed signal beam as a function of the dib-

placement of the film plate from its original position, normalized with

respect to the power otained w'4en the displacement of the film plate

is zero. P is given tl
n

(3.38)n

"IxI :¢'

where the integrtioA over the x'y' plane extends over the area of

the film plate where both the signal and reference beam wavefionts
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existed during the exposure of the hologram.

The diffracted field d is given by equation 3.16, vith
d

0= x', (3.39)
0

The factor v defined .y equation 3.17, then becomes

P i-" Y'Ix'
n(x) E e AU.40o)

Recalling that we have only a single signal beam wave, we see that

M a P + 1 in equation 3.16 (only one term in the summation over m ,

and hence, using equations 3.16 and 3.40, equation 3.38 becomes

m  n() n* (Ax)dx'dy'

pn n (A x X' (d(3.41)

'y'

Observation of the developed hologram plates has shown that the ampli-

tude of the signal wave E is essentially constant over the area of

m

integration, and thus it is a reasonable approximation to remove

. ' from under te integral sign in both the numerator and denomina-
m m

tor of equation 3.41. Thus

Sn(Ax') n* (Ax')dx'dy'

P (ax ' ) X , Y (3.42 )

J J n(o) n" (O)dx'dy'

xy
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The quantity Ej in the expression for n given by equation

3.40 is the amplitude at the point (W, y', 0) of the field scattered

by the Jth scattering point on the magnesium oxide surface. Ej will

be assumed to be given by

CA
Ej - 3.4)

where A is the amplitude of the wave illuminating the scattering ear-

face at the Jth scattering point and rj is the distance from the

scattering point to the point x', y' on the emulsion surface. C is

a constant which we will assume to have approximately the same value for

all scattering points and thus will cancel out in equation 3.42. The

illumination wave is an unfocused laser beam passed throngh a 3/32

diameter aperature. The variation of Aj across the laser beam de-

pends on the geometry of the laser cavity (mirror curvatures and spacing),

the transverse mode structure, and the distance from the output mirror.

The laser was operated in the lowest order transverse mode, and thus

has an amplitude variation which is Gaussian (truncated by the aper-

ture). Thus, the variation with r (defined normal to the laser beam

axis) is

2
A(r) w E • "ar (3.44)

The constant a was determined by fitting the above curve to measured

data on the variation of the amplitude with r . A value of

I mm-2 645.16 (in)2 (3.45)
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was founa to fit the measured data veil, An examination of the geozetry

of the experiment shows that the amplitude of the illumination wave at

tne point (yj, z,) on the magnesium oxide surface is found by setting

r2 in equation 3.44 equal to

r y2 - (z- )2 cos 2 (260 30') . (3.46)

j 4

The distance r j from the scattering point (-1/2, y , z, ) to the

-oint x', y' 0) on the emulsion surface is

r = +x' * 1/2) 2 + (y' - Y) 2  ] (3.7)

Equations3.43 to 3.47 specify E as a function of the coordinates of

the Jth scattering point and the coordinates of tne observation Doint

_on the hologram. The remainingquanttyi that needs to-be specified.n_ ____

order to determine n is Li , the x' direction cosine of the props-

gation vector Rj of the wave scattered by the Jth scattering point,

evaluated at the observation point (x', y', 0) . We assume kj

points in the direction from (-1/2, y,, z1 ) to (x', y', 0) , and thus

x' + 1/2 (3.48)
r i

The application of equations3.40 and 3.42 to 3.48 permit the

computation of the normalized power diffracted into the virtual image

as a function of the translation distance Ax' . This was done, with

the calculations being done numerically with the aid of a digital com-

puter. The reaults of this computation will be presented in Section

i .
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3.3.3, which follows the next section which de'sls with the details of

the experiment.

3.3.2 Uperimental Details

The basic idea of the experiment was to take a hologram of a

simple wavefront, with the reference beam being of the form of a field

produced by a large number of point sources. The hologram was then re-

positioned and the total power in the reconstructed signal beam wave-

front was measured as a function of translation of the hologram plate

from its initial position. The experimental apparatus which was used

to perform the experiment is shown in Figure 3.2.

The apparatus on the iron surface plate is that which was

used to expose and illuminate the hologram. The source used was a

helium-neon laser which has a power output of about three millivatts

when operated in the lowest order transverse mode. A camera shutter

was used to control the exposure time, which was of the order of ten

seconds. A beam splitter provides two beams, one of which is passed

through an optical system which pe-forms a low pass spatial filtering

operation and then produces a converging beam which comes to a focus

about 27 inches behind the film plate. The other beam is directed by a

series of mirrors (which are positioned so as to make the path lengths

of the two beams approximately equal) positioned so that the beam falls

on a diffusely reflecting surface oriented so that the scattered light

reaches the region of the film plate which is illuminated by the con-

verging beam. The diffusely reflecting surface is a layer of magnesium
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oxide powder pressed between two microscope slides. The angle of inci-

Ldence of the incident laser beam is adjusted so the reflected beams from

the glass air Interfaces do not strike the region of the film plate

which constitutes the hologram area. The film plate (Kodak 649-f

4x5x.25 microflat plate) was held in a specially designed film plate

holder which permitted accurate repositioning and translation of the

film plate. Translations of the order of a micron or less were possible

through the use of a micrometer drive mechanism with a 187:1 gear reduc-

tion attachment.

The apparatus on the smaller table (see Figure 3.2) is the

system used to measure the power in the reconstruction of the converging

wavefront. The converging beam is chopped at about 103 CPS, passed

through a small aperture located at about the focal point, and then

detected by a photomultiplier. The aperture has the function of dis-

- criminatingagatnst-background 1 ht-.attedtfrom the t-lm-)p ate which__

is not part of the reconstructed signal bean. The output of the photo-

multiplier is measured using a lock-in amplifier, which makes use of a

reference signal generated by the chopper.

During exposure of the holograms the iron surface plate vas

"floated " to uncouple the apparatus from bailding vibrations. In &ddi-

tion, acoustical shielding was used in order to reduce any acoustically

excited vibrations in the critical elements of the hologram taking

apparatus (beamaplitter, mirrors and film plate).
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Discssion

The results of the numerical calculations referred to at the

end of Section 3.3.1 and the experimental results are shown in Figure

3.3. The agreement between experiment and theory is excellent, consid-

ering the approximations made in the analysis and numerical computa-

tions as well as the difficulties involved with the erperiment. F-.;r-

thermore, we observe that the estirut'- of tAx' (the '.ranslation
v

distance required to make the reconstruction vanish) given by equati n

3.20 of 26.7 microns (equation 3.37) is quite accurate.

There were two major areas of difficulty that wi.:re encounter-

ed in carrying out the experiment, naien.y low power levels in the re-

construction of the signal beam end ,iifficultien in obtaining

accurate translation motions oaV' the order of a micron or less. The low

power levels were due main.y to the fact that in this experiment we are

forced to ill-um.1 rte t :e 1,logram vith the reference beam which was

used to expoee the hologram, which was quite weak due to the relatively

low power of the laser, the inefficiency of the scattering step, and

the l/r" loss between the scattering area and the film plate. This

latter loss was mlnimized by placing the magnesium oxide scattering

layer as close to the film plate as was mechanically possible. In

addition, the relative power levels of the signal and reference beam

as well as the exposure time were adjusted to obtain maximum efficiency

from the hologram. This was accomplished by an "educated" trial and

error procedure, making use of the results of an experimental study of

the holographic diffraction grating, which is discussed in Chapter Four.

.£
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The most efficient hologram produced a reconstruction with a power

level of the order of 2 x 10-9 watts, which allowed a measurement of

P n(X') down to a value of about 0.05 before the sensitivity limit of
n

our detection system yas reached (about 10-  watts). Lover values were

maured but the nace in the detection aystem became objectioznable.

The translation of toe film plate was accomplished by pushing

the film plate sideways in a opecial holder with a micrometer drive,

which in turn was driven by a 187:1 gear reduction device. Once the

backlash of the device was taken up there was no difficulty in moving

the rod pushing on the film plate by very small increments. Trouble was

experienced, however, with the movement of the film plates when thin

.OlO" x 4" x 5" film plates were used, and satisfactory results were

obtained only when thicker and heavier .250" x 4" x 5" microflat plates

were used,

It was observed that a translation of the hologram plate re-

sulted in a corresponding translation of the reconstructed beam. This

required a corresponding movement of the small aperture used to block

out the background noise. A similar motion of the focused beam was

observed in earlier experiments (not reported in this thesis) dealing

with holographic lenses, in which a hologram was taken of a converging

wave, using a single plane wave for a reference bpwt. In that case

the reconstructed converging wavefront remained in register with the

hologram plate, as could be expected.

£
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3.4 Fuurier Transform HoLograms with Multiple Wave Heference Beams

We revall that. the fundamentel process involved in holography

is the interference of two fields in the exposure of the film plate.

One of there fields is arbitrarily referred to as the reference beam

and the other as the signal beam. By convention ve refer to the field

which is used to illuminate the hologram as the reference beam, and the

field that is to be reconstructed (virtual image as the signal beam.

We recall that the most common situation it where the refermlce beam is

a single wave and the signal beam is some complex field such as the

light acattered by a diffusely reflecting object. It is now of interest

to examine a particular case where the reference beam is the complicated

field and the signal beam is the plane wave. To be more specific, we

shall consider the case of the Fourier transform hologram, where we

adopt the point of view that, the field due to the transparency is the

reference beam, and the plane wave ia the signal beam._

This type of hologram is of particular interest, since it is

in fact the complex part of the "matched filter" used by Vander Lugt

(41,42) to perform signal detection by complex spatial filtering.

Similarly, Gabor utilizes a variation of thia type of hologram in a pro-

posed character recognition s)stem (43). We shall be interested in ex-

aminirg the translationfl sensitivity of Fourier transform holograms,

both with lrespect to translations of the transparency and translations

of the hologram itsdlf. We will alao be interested in considering the

backgSound noise, and will exwuine both the translatlonsl sensitivity

and background noise when the transparency is diffu~ely illuminated.
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Before considering Fourier transform holograms with multiple wave ref-

erence beam, however, we shall review the case where the reference

bemm consists of a i gle plane wave.

3.L4.1 Review of Fourier TrL,,r.&rorz Hologra

By a Fourier Transform hologram we mean a hologram of a two-

dimensional trsnsparency, taken under suco conditions that the exposing

field at the film plate due to the transparency in of the form of a

Fourier transform of the field trarsmitted by the transparency. This

can be accomplished by the use of a converging lens, when the transpar-

ency and film plate are located in the front and back focal pianes of

the lens, respectively (the Fourier transform relationship between the

amplitudes in the front and back focal planes of a lens is reviewed in

Appendix V). Other experimental configurations are possible (34), and

we-sha.U. briefly review Stroke's method o-f "lenaless" -Pourier transform

holography at the end of this section.

The treatment which we shall give here will be a brief review

of this well-known aspect of holography (2), (314), (38) and we shall

limit our treatment to a demonstration of the formation of an image of

the object transparency when & lens is used in the reconstruction pro-

cess. A further discussion of certain aspects of Fourier transform

holography will be given in the following sections.

Let u3 begin by considering the case where the object trans-

parency is placed in the front focal plane of a converging lens and il-

luminated by a plane wave of unit amplit ie at normal incidence. If
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TIx 1, y) is the amplitude transmittance ie ransparency. then the

amplitude distributior in the back focal pla:., the lens is show-n in

Appendix V to be given by

i 2 (x 2  + y

ES (x2 Y2 ) MJ J L(X 11 Y1 ) e ) I I
.a -D

(3.49)

We shall take the reference beam to be an off-axis plane wave of unit

amplitude which has the form (in the x29y2 plane)

229Y

ER(x2 ,y2 ) z - A 2 + (3.50)

Such a reference beam could be produced by a point source suitably

located in the plane of the object transparency, or by by-passing the

lens entirely with a collimated beam. The hologram is formed by placing

a film plate in the back focal plane of the lens, and illuminating "t

with the fields ES  and ER . For simplicity we shall assume that the

transmittance TH of the developed film plate, or hologram, is simply

equal to the intensity of the exposing fields. Thus

TH - Nq *ESES + NES + ESER (3.51)

In the reconstruction process, the hologram is placed in the front focal

plane of a similar lens and the reconstructed images are formed in the

back focal plane. Thus, the amplitude of the field in the back focal

plane (x39 y3 ) is given by

m m m m m m m m m m mI
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E(x3 y3) dy? ~ ~ y 3
31yffI 2 d 2

- (3.52)

The terms in the expression for TH as given by eq~uation 3.51 which

!H
0 4

are of interest are E ES nd E5E , which correspond to the real and

virtnal images, respectively. Let us consider the~ virtual image. Sub-

stitution ot E for Te in equation 3.52 yields, using equations

3.49 and 3.50,

-i x (xI + X3  Yl+ Y I

E (x39 3  1 .( 2 JJ (xl,) e {IA 3 2 1 3) + Y2(yl + 3*

xdx dydx,2dy2  (3.53)

2w2

____Integration over__x-,2 yelds__(At)2 5(X + x3 ) 6(Y:1 +y 3) and hence

E (x3  T3  = (-X3 -) .(.5)

Similarly, the amplitude distribution E (x3  y) due to the real image

term IEES is given by

rrr-i -x (-X +X - 2ft)]

Er(3~ 3) () 2J J Xf1 1)e A 2 1 3

_i 2 Y2 (-Yl y3 " 2fm)

xe dx1 dy1Idx 2 dy 2  (3.55)

and hence

5
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E (x , y') * (x - 2ft, y - 2fM) . (3,56)
r 333 3

Thus, both the real and virtual iasges yield a reconstruction of the

traneparency, and these are separated due to our choice of an off-axis

reference beam. The zero order terms are likewise separated from the

reconstruction being centered at (ft, fm) .

Let us now briefly review the technique of Stroke (38, 39, 40)

whereby a Fourier transform hologram may be obtained without the use of

a lens. The essential feature of this technique is the use of a point

source located in the plane of the object for the reference beam. This

results in the cancellation of certain quadratic phase factors with the

result that the hologram obtained has a form similar to that of a

Fourier transform hologram.

To put these statements on a more quantitative basis, let us

assume that -the-tmnpare cyandfilm-plate-are-locatod- in- parallel-------

planes a distance z apart. The transparency with transmittance0

T(a, 0) is illuminated with a plane wave of unit amwplitude at normal

incidence and this yields the field in the xy plane given by (Fresnel

diffraction)

21z
o 1z ~ i iw' •)2 + (-aj

ES(xiy) - e J ( , 3) VZO -d . (3.57)

Nov suppose, as was suggested by Stroke, that the reference beam is pro-

vided by a point source located in the a,B plane. Taking the point

source at the origin in this plane yields a field in the xy plane of



the form

E.R(x'y) UA oi~ (3.58)

oro
or, taking A .1

1 %(z + + Y2

(X,Y) -0 _. 0 2z (3.59)
z 

0

The resulting amplitude transmittance of the developed hologram plate

in, using equations 3.51, 3.57 and 3.59

rH(xy) -EE + ESES 4

i (2 +2 2wi

-.+ -- (m + BY)

Xz AZ

is _a2 +2) 2w! c~

We observe that except for the factors

SivE 2 , 52) (3.61)
AA

0
(36o

equation 3.60 is of the seane form as was obtained in the previous

section, for the case of the Fourier transform hologram. Stroke (38)

notes that the above phase factor merely makes the reconstructed objec

I2(Xz. .



appea.r as though it vvre recorded through a thin negative field lens,

and that this can be compensated ror in the reconstruction. Winthrop

and Worthington (34), in their paper dealing vth the Fresnel trnsfos

representation of hologrm and hologram classification, refer to a

hologram of the form of equation 3.60 as a quasi-Fourier transform

hologram, and they discuss its imaging properties. Stroke (38) makes

it clear that this arrangement is not limited to transparencies, but

can also be used with diffusely reflecting objects, and presents experi-

mental work in this area (40).

3.4.2 Translation Sensitivity - Dislacement of the Transparency

In the previous section we reviewed Fourier transform

holograms, and considered the case where the reference beam was taken

to be a plane wave and the signal beam was the field due to the traA.-

parency. We now wish to turn this around, and consider the field due

to the transparency as the reference beam and the plane wave as the

signal beam. Thus

w 2wI - 1 (xlx2 +:l 2 )
.) :(xl,..1 ) e " dxl dy1  (3.62)

and
2,w (.tx2

E 8(x 2 y 2)  e X (3.63)

This re-labeling of the exposing fields, of course, doesn't change the

hologram in any manner, but it is convenient because it allows us to
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retain our designation of the reference beam as the field vhich is used

to illuminate the hologram,

Thus, let us consider the case where a transp rency having an

amplitude transmittance r(x1 , yl) is placed in the front focal plane

(xl, yl) of a converging lens of focal length f and illuminated with

a plane wave at normal incidence. The film plate is located in the back

focal plane of the lens (x2, Y2 ) and illuminat,'d by the field due to

the transparency (the reference beam) and by an off-axis plane wave

(the signal beam). As before, in the reconstruction process, the

hologram is placed in the front focal plane (x2, y 2 ) of a lens of

focal length f and the reconstructed images are formed in the back

focal plane of the lens (x3, y3 ). If the illumination is done with the

reference beam, then the resulting amplitude distribution in the back

focal plane Is given by equation 3.52. That is, _

22w

i_ 7f EESE ; ) ei (2 f (x2x3 + Y(Ec,3,f 2 - yf 3( + 2

irr. -i (xx,4- "y3)

I iff223

The last two terms are what is of interest, as they correspond to the

virtual and real images, respectively. Let us consider the virtual

image. Using equation 3.62 for the reference beam and equation 3.63

£1
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for the signal beam, the virtual Image has an amplitude distributlon in

the (Xa, y3) plane given by

E (X3 ,y 3 ) ( 3 ) y r(x 1 ¥*) •x fy

.2* (x(x1 13.i x(-xl~x3-'f) * ;(yl-yl+,v3-f)l

Xe dx'x 2Y2 . (3.65)

We c that integration over x and y2 yields (ef)d2 6(s .X +x3If)

6(y-yj3-mf) and hence, after integrating over xl' and yll , we

obtain

E (x3 PY3) " Tx'yl *Xl) +(- X1- 3 -f, ,l Y 3 - a)d,1 . (3.6)

Similarly hor the real umage, ie have

E r(x3tYt -(.L)3 o t (xly ) nT( p r .3 "f " ... 1 1"

-i 54 2( 1 + x! + x3  + Y 2(yl + yi + Y3 + 2f))]xdlxdlx~y

(3.67)

which yields

The above atialysis is quite similar to that used by Vander

Lugt (41), who has formulated these types of calculations in a conven-

ient operational notation In a recent paper (44). An exam~ination of
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equations 3.66 and 3.68 shows the familiar result (38,4 1 ), that in a

aystes of the type considered above, the formation of the virtual image

involves a correlation operation, while the formation of the real image

involves a convolution.

Let us now examine the effect of a translation of the trans-

parency on the virtual image. Thus, we shall consider the case where

the hologram has been exposed and developed, and then replaced in its

original position, but where the transparency that was used to provide

the reference bea during the exposure of the hologram is translated

by an amount ro in the xl, yl plane from its original position,

where

r x + e Ay (3.69)
0 x

The illumination field, provided by illuminating the displaced trans-

parency with aplane wave of unit aplitude at normal incidence, is

then given by equation 3.62 with T(x 1 ,y 1 ) replaced by i(x1-Ax,yl-4y).

Equation 3.65 then becomes

E~(x 3.y3 3 u 9Y . r(xl & x, Y1  A y) S(x, y)

- x (x -x '+ x - f + ( l y - f ) )
Xe Af 2 1x1 . 3 -tf) .y 2 (yl-'yi+y 3-m) dxl~lxjyd~y (3.70)

which yields, after integrating over xl,yl,x l and yI

Ev(X3  3 u JJ T(x -Ax' yl-ay) -*(x,+x3-tf, yl+y3-mf )dx (3.71)

VF Xf£



*aking the change of variables u xI - ax and v b y1  -hy the

above equaticm assumes the form

a(X A T(uv),'(tax 3+Ax4t, v1* 3 e4..f) dt dv (3.72)

and it Is seen that a translation of the transparency merely results in

a similar translation of the virtual image in the (x3,y3 ) plane. An

examination of equation 3.72 shows that this translation is equal to

-o , and thus the virtual image remains in register with the image of

the displaced transparency in the a3 ,y3 plane, whose image is also

displaced by -;o . This result is analogous to the prediction by

van Heerden (12) that his "ghost image" remains in register with the

image of the illuminating transparency, and is well known in the field

of complex spatial filtering (1,144).

We have thus seen that except for a displacement in the

(x 3 ,y 3 ) plane, the virtual image is not affected by a translation of

the transparency. This can he exlplained in physical terms by noting

that the field transmitted by the transparency can be expressed as a

continuous distribution of plane waves. A translation of the transpar-

ency in the (r1 ,y1 ) plane doesn't alter the direction of any of these

waves, and hence they are imaged at the same points in the (x 2 ,Y 2 )

plane regardless of the translation. There is, however, a phase shirt

produced by the translation which accounts for the displacement of the

virtual image. This phase shift, in the (x2 9Y2 ) plane, can be found

by using equation V-l4 (Appendix V), which gives the optical path
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length between the points (x ,y1) and (x2,¥2) . What we are interest-

ed in Is the change in opttval path length as a frction of (X2 ,y2 )

produced by a translation of the transparency or "source" in the

xty1  plane. This will give us the phase shift e as a function of

(x2 ,Y2) , We observe that

0 2 r r(x + Ax, yl + 4y, x2 Py2) " r(xyx 29 2)] (3.73)

where r is given by equation V-14 with g u f

Thus, using equation V-14 ve find

0 211 (x2 ax + Y2 y) (3.74)Af 2

and hence

•i0 , me-i 2  2  (3,75)

which accounts for the displacezent of the virtual image by (Ax,Ay) in

the (x3 'y3) plane.

3.4.3 Translation Sensitivity - Disnlacement of the Hologram

Let us now consider the case where the transparency is left

in its initial position, but the hologram plate is translated In the

(x2 ,Y2 ) plane by ro . As before, we shall exaMliL t.- effect of the

translation on the virtual image, in the (x3 ,y3 ) plane. In the ab-

sence of any translation of the hologram (i.e., when the hologram is

replaced in exactly the position it was in during exposure) the
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amplitude or the virtal image in .he (X3 ,y3 ) plane is given by the

secon term in equation 3.04

2w

E,( xy 3 ) .- J (X,,y 2 ) E(Xx 2 ) (- 2,, 2 ' e

(3.76)

A translation of the hologram plate by ro means that in ths above

equation

(x2,y2 ) Es x2,y) - 2 - 6y) E- (x2 - ax, Y. - A )

and hence the expreseon for Ev(x 393) becomes, using equation 3.62

for the reference beam and equation 3.63 for the signal beam,

Ev(y 3 )  (_13T(-i).l ) 1-( xly )

xe

-i 1 [Ax(x. + tf) + AY(y! + 3)]

Integrating first over x Vy 2  and then over xl 1{4 yields

Ev(x 3 .Y3 ) • T J (x 1 ,y l ) '(xl + X3 - I9  + Y3 of)

- r&(' 1 C 13) w h(y. * y3)+ (Af 1 3 e~l Y) xl d (3,78)



We see from the above equation that the result of translation of the

hologrt- plate by an amunt i the apprerance of th* ph&at tator

2- 9 [AlxI  X + ,Y(y* + yl))• -e (3.79)
3!

under the integral sign. It is clear that the effect of this phase

factor depends on the nature of t and upon the amount of translation.

If ; in sufficiently large such that the phase factor ei ' oscillates
0

rapidly in that portion of the range of integration which contributes to

E V(x3 ,y3) then Ev(x3,y3) will be essentially zero, and the transla-

tion will have resulted in the disappearance of the reconstruction of

the signal beam. On the other hand, if ; is iufficiently stall sucho

that e i  is very slowly varying, then the effect of the translation

will also be small.

These results are analogous to those obtained in Section 3.2.3,

where no lenses were used. In both cases a translation of the hologram

plate can result in the disappearance of the reconstruction of the

signal beam, with the amount of translation required to make the recon-

struction vanish depending on the nature of the "source." There is,

however, an important difference between the two cases as when there

are no lenses used a translation of the source is equivalent to a

translation of the hologram, and thus the reconstruction is equally

sensitive to either a translation of the source or a translation of the

hologram plate. On the other hand, the Fourier transform hologram is

invariant to a translation of the source (i.e., the transparency) but
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is quite sensitive to a translation of the hologram plate.

A more direct comparison between the two cases will be made

in Eection 3.4.5 when we -onsider diffuse illumination, but before

pursuing the analogies between the analytical results of this section

with those of Section 3.2, it should be noted that in Section 3.2 we

were intere9ted in computing the reconstructed signal field at an

arbitrary point on the hologram plate, while in this section we have

dealt with the entire reconstructed field imeped in the back focal plane

of a lens. Furthermore, the virtual image that we have dealt with in

this section includes what was referred to as noise in Section 3.2.

3.4.4 Background Noise

We saw in Section 3.2 that when a multiple wave reference

beam was used the virtual image contained both a reconstruction of the

original&-signal beam and-a -number of wvus-tat-ere designated- as

background noise. In that qection, because of the form of the fields,

it was convenient to treat the reconstruction of the signal beam and the

background noise separately. In this section, however, we have found it

more convenient to treat the fields in their entirety. Thus the virtual

image Ev(x 3,y 3 ) contains not only a reconstruction of the signal beam,

but also the "background noise." The form of Ev (X3 y3 ) is found in

a straightforward way by using equation 3.66 which expresses E(x 3 Y3 )

in terms of the autocorrelation of the amplitude distribution of the

reference beam in the (x,,yI ) plane.

It is clear that since the signal beam has been taken to be a



plane wave, in the Ideal te where the hologram and imaging lens are

of infinite aperture, a se-free reconstruction of the signal beam

would require E (x3 ly to be a delta function. We can examine the

effect of the nature o the reference beam on the form of E (x3 ,Y3 )

in physical terms by observing that the more closely E (x2 y2 )

approaches that of Es(x2 ,Y2) (uniform amplitude with a linear phase

shift) the more closely Ev(xVy 3) will approach being a delta

function. Thus, since

Ev(x2,Y2) E.(x 2,Y2) ER(x2,y2) E(x 2 ,y2) (3.80)

we see that the more localized E,(x 2 ,Y2 ) is, the more degraded will

be the reconstruction, as evidenced by the "spread" of E (x3,y3)

Thus the worst case wculd appear to be where ER(x2 ,y2 ) approaches a

delta function, which corresponds to a rather uniform reference beam

(-plane-wave)nlthe xryl) plane. On the other hand, if the refer-

ence beam is produced by a single point source in the (xlVy) plane,

then

ER(x Y2 ) E(x 2 ,y2) constant

and hence the reconstruction will be essentially noise free. Thus, it

is clear that the more "localized" the reference beam source in the

x 1 ,y 1  plane, the more closely Ev (x3 ,y 3 ) will approach the noise-free

case. Similar conclusions can be reached by an examination of equation

3.66.

m m m m m m m m m m m
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3a, S fruae Illumination

,'e would nnw like to consider the case where the transparency

Is diffuse.. illuminated, such as would be the case if a piece of

ground glass was plaeed behind the transparency and illuminated with a

plane wave. It Is clear that an exact specification of the field in

the (x1,' L plane is then quite impractical, because of the inherent-

ly random natare of the diffuser. Nevertheless, there is some definite

field distribution in the (xlY 1 ) plane, and it can be represented by

(X N(xl.y 1 ) T(X 1 ,y 1 ) (3.81)

where T is the amplitude transmittance of the transparency and N

accounts for the diffuser.

The question arises as to whether it is valid to apply the

analysis used in the preceding four sections, where we merely replace

T(x,y) by N(x,y) T(xy) . We recall that we did not place any ex-

plicit restrictions on r(x,y) , but there are some implied restrictions

due to our use of the Fourier transform relationship between the ampli-

tude distributions in the front and back focal planes of a lens, which

is a good approximation to the actual case only for paraxial rays.

Thus, while the Fourier transform relationship may yield quite accurate

predictions for transparencies where the angular spread of the diffract-

ed waves Is relatively small, it may not be too accurate when a large

angular spreed exiets,such as coulld be generated by a diffuser. A

thorough investigation of these points will not be given here. Instead,

we shall use the analysis of the preceding sections, keeping in mind
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the llmitations of the analyals.

Thus, It is clear that the same translational invariance of

the transparency (plus the diffuser) exists u before, and likewise

the same type of trAntlation sensitivity exists with respect to a

translation of the hologram plate.

We observe that with the diffuser, it is quite reasonable to

consider the reference beam to arise from a very large number of point

sources of varying amplitude and phaie distributed throughout the por-

tion of the (xiy I ) plane occupied by the transparency. Then, since

each point source in the (xly 1 ) plane generates a plane wave in the

(x2 ,y2 ) plane, the exposing and illumination fields are of the form of

a sum of plane waves, and the analysis of Section 3.2 is directly

applicable. The invariance of the reconstructed signal beam to a trans-

lation of the transparency (plus diffuser) is immediately evident from

equation 3.17 when we note that the lens has the property that all rays

reaching a given point in the (x2 ,y2 ) plane must have left the

(x lYl) plane in the same direction. Thus all the i's in equation

3.17 are constant and hence the magnitude of n is a constant independ-

ent of i , and thus the reconstruction is not affected by a transla-0

tion of the transparency (plus diffuser).

Similarly, the analysis of Section 3.2 is directly applicable

to the case where the hologram plate is translated, but we will not con-

sider this further here, since this has been rather thoroughly covered

in previous sections. What is of interest, however, is an examination

of the effect of the diffuser on the "background noise." Thus, let us
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consider equation 3.66, with T replaced by NT

[4 Ev(3x34 3) "- if T (Xl,y 1 ) N(Xlyl) T'(21  x3 -tty 1 .y 3
"a)

N(x I * x 3 - If, y1 + Y3 - mf)dxIdyl . (3.82)

It is apparent that in general the use of tne diffuser will

make Ev(x 3 0Y3 ) much more highly localized, since one could reasonably

assume that the "random" nature of a diffuser would imply that the above

integral will have negligible value unless the arguments of N and N*

are almost equal. To put this another way, we may think of the diffuser

as generating "white noise," in the sense that the autocorrelation

function of N may approach a delta function. This will obviously

dominate the above integral, with the result that E,(x 3 Y3) will be

quite localized.

These observations can be put in physical terms by recalling

that the spread in Ev(x 3 ,Y 3 ) could be associated with a localization

of E.,(x2 ,y2 ) . The effect of the diffuser is then to spread ER.(x 2 ,y 2 )

which in turn results in a narrowing of Ev(x 3 ,y 3 )

3.4.6 Discussion

In the previous sections we have examined the translation

sensitivity and background noise associated with Fourier transform

holograms when the "reference beam" is the field generated by illuminat-

ing the transparency, and the sigtal beam is an off-axis plane wave.



This type of hologram is of particular interest because of its use in

various character recognition systema, such as those discussed by

Vander Lug (41,42) and by Gabor (43). In systems of this nature a

Fourier transform hologram is taken of a transparency containing the

character or characters to be recognized, and the recognition operation

is accomplished by illuminating the hologram with the field from a

transparency (using the same optical system as was used to generate the

hologram) which may or may not contain the original character or

characters. If the transparency is essentially the same as that used

to produce the hologram, then the field that illuminates the hologram

is essentially the "referenci'beam, and the signal beam (the plane wave)

is reconstructed. This is brought to a focus in the output plane

(x 3 ,y 3 ) where its presence signifies that tht "test transparency" is

in fact the one used to make the hologram.

If the test transparency is different from the original than

the signal in the output p~ane, E (x 3 ,y 3 ), will be of the form of a

correlation of the amplitude transmittance of test transparency 'T with

the amplitude transmittance of the original transparency 7 (this type

of operation is often called correlation filtering or correlation detec-

tion). It is quite straightforward to apply the analysis of Sections 3).2,

3.4.3, 3.4.4 and 3.4.5 to this case, as all that is involved is to

use

i f -i I (X2 + YlY 2 )E(x2, 2  - T T Iyl ) e Afdx d41  (3.83)

21Y2 T~xl
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for the illumination field, instead of ( 29Y2 ) as given by equation

3.62. We observe that the effects of this aubtitutlon on Ev (X 3,3)

is merely to change T to TT in equations 3.65, 3.66, 3.70, 3.71,

3.72, 3.77, 3.78 and 3.82 (the factor Te  in these equations remains

unchanged). We shall not go through the analysis for this case here,

as it would add little if anything new.

It might, however, be ukeful to ake a few comments within

the context of character recognition about the case where we 
have dif-

fuse illumination of the transparency. Suppose we keep the same dif-

fuser but use a different transparency, with amplitude transmittance

IT " to illuminate the hologram. Then Ev (x3,Y 3 ) is given by equation

3.82 with T replaced by 
TT

E (x3 Y3 ) .
l J T (Xil 'r(X1 + 3 f -

mr )

xN(Xlty) N*(x1 + x3  I f' Y Y3 Mf)dx1dyl " (384)

It is reasonable to assume that N will be a rapidly varying irregular

function and hence the integral will have an appreciable 
value only

when the arguments of N and N* are very close to being equal. This

means that the Ev (x 3 ,Y3 ) will be quite localized, as discussed in

Section 3.4.5. We also observe, however, that Ev(x 3 y3) will depend

on how closely TT and T are correlated, and it thus appears that

the system performance may be improved by the use of a diffuser 
since

the output is still dependent on how closely TT and T are correlated
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but is now much more highly localized in the output plane. The possi-

bility of improvement of the oper-tion or the vy-tem when diffuse ilnu-

mdnation is used seems reasonable from a physical point of view when we

note that the diffuser results in the field at the hologram plate due

to the transparcncy being much more spread out than before, and hence a

much greater arefi of the hologram plate is utilized.

Another interesting case is where a different diffuser is

used with each test transparency, as this situation is equivalent to

the situation which would exist if one were to use characters printed

on a diffusely reflecting ourface for input to the character recogni-

tion system. In this case Ev(x 3 ,y3 ) would be given by

E (x3, JJ T(xliYl) -r(x1 + 13 LI, y - Er)

N* 3 -N*x + - mf)dx1dyl (3.85)
~T xlyl) 1_ f l+Y

In general, it would appear reasonable to assume that NT  and NO are

uncorrelated, and henc E (x 3 y3 ) will be essentially zero except

when N a N . The system thus performs exceptionally well with respect

to recognizing the diffuser, but this is not in general what is

desired, as what one wishes to recognize is T , independent of the

diffuser. Thus, when there is a different diffuser associated with

each test transparency, the system will not function satisfactorily as

a character recognition device. We observe that the situation is not

improved ty setting NO - 1 in equation 3.85 (i.e., by illuminating



the master transparency T with a plane wave when we produce the
holoaraw). since the factor N will atill be preo-ont %nd will result

in Ev(x 3,y) being essentially zero. It Is thus cle&r that bamed on

the assumption that in general N and N wi!1 be uncorrtelted, that
T

i any practical charaeter reognition system the irput data must be in

the form of a transparency, and if one wishes to construct a character

recognition system where the input data is of the form of characters on

an opaque diffusely reflecting surface (i.e., printed page) then an

auxiliary step is required to put the input into the form of a

transparency.
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AMPLITUDES OF THE DIFF7RA TED r1,

4.l Introduction

In this chapter we shall extend the scattering theory of

wavefront reconstruction, as developed in Chapter One, to include the

computation of the amplitudes of the diffracted waves. We will deal

only with transmission holograms, and will make use of both analytical

and experimental techniques to determine the quantities which are of

interest.

We shall be interested in dealing with transmission holograms

involving high spatial frequencies and thick emulsion layers, and hence

we must take into account the entire emulsion layer. We recall that

this was done in Chapter One, as the grain density was specified at

everypoint within the emulsion layer. We should note, however,- that

although the grain density is upecified throughout the emulsion layer,

the grain density alone dves not provide a complete description of the

emulsion layer. The problem of specifying the characteristics ot the

individual grains will not be considered, but instead, the effects

which are related to the detailed nature of the film grains will be

investigated experimentally.

In Chapter One we computed the directions and phases of the

diffracted plane waves produced when the grains associated with a par-

ticular periodicity term in equation 1.9 are illuminated by an arbitrary

plane wave. We saw that they were completely specified by the
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wavelength and direction cosines of the incident nlane wave and by the

periodicity of the recorded interference pattern in the plane of the

emulsion surface (or in any plane Z w constant ). The problem Vhich

we wish to consider now is that or determnir the aaWA1tud## ur t

diffracted waves.

It is clear that there are a number of factors which are of

significance with regard to the problem of computing the amplitudes of

the diffracted waves. They are as follovs:

(a) The amplitude if a particular diffracted wave will be

strongly dependent on how well the waves scattered by the grains in the

various planes z - constant add in phase. This will be e function of

the particular diffracted order considered, the wavelength and direc-

tion of the illumination wave, the spatial variation of the grain

density throughout the emulsion layer, as well as the thickness of the

emulsion layer.

(b) The amplitude of a particular diffracted wave will de-

pend on the angular dependence of the amplitude of the wave scattered

by each individual grain. This will, of course, depend on the

characteristics of the particular grain under consideration.

(c) The amplitudes of the diffracted waves will be affected

by losses due to attenuation within the film emulsion layer and reflec-

tion losses at the various interfaces. The reflection losses are quite

straightforward to compute but the losses due to attenuation within the

emulsion layer will depend on the film characteristics, processing

procedures, exposure times, etc.
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the zotwnt of light scattered by eieh grain as well as the total number

of grkirzw prevent.

11e problem of computing the fields produced when a -volume" t

diffraction grating iR illuminated by a plane wave is not unique to the

particular approach which has been used here in connection with holo-

graphy. Indeed, it arises in connection with information storage in

three-dimensional media (8,13) as well ar in the diffraction of light

by ultrasonic waves (52). We can designate the methods used to obtain

a solution of a problem of this type c being either "riguruus" or

"tcalar" in nature. By rigorous we mean where the solution is obtained .

by a direct application of Maxwell's equations. We realize, of course,

that certain idealizations may be nccessary in describing the diffract-

ing volume and certain approximations may be required to obtain solu-

tions of the equations, and thus certain "rigorous" methods may be i
"more rigorous" than others. Born and Wolf, in Chapter Twelve of their

book, "Principles of Optics" (52) treat the problem of diffraction of .

light by ultrasonic waves using rigorous methods, More recently, and

with direct reference to holograms employing "thick" emulsions,

Burckhardt (53) solved the problem of computing the diffraction of a

plane vave at a sinusoidally stratified (lossless) dielectric grating

using a rigorous approach, where the stratifications we- perpendicular

to the surface of the grating, and where the wave vector of the illumi-

nation wave has no component in the direction of the grating lines.
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secondary wn.v. (when the grating is illuminated, of course), and where

the diffracted waves are computed by coherently summing the waves pro-

uced by each element of voiQwne of the grating. This type of approach

was used by van Heerden (13) in connection with his investigation of in-

formation s-.crage in solids. Van Feerden restricted his analysis to

the case where the illumination plane wave is identical to one of the

two original exposing plane waves, and demonstrated that for a very

thick grating, the amplitude of the diffracted field is negligible ex-

cept in the directicn of the other original exposing plane wave. More

recently, Leith et al (8), in a paper dealing with holographic data

storage in three-dimensional media, made a careful investigation of the

problem of determining the amplitudes of the diffracted waves produced

when a holographic diffraction grating is illuminated with a plane wave.

In particuiar, they considered the case where the propagation vectors

of the two waves which generated the grating and the propagation

vector of the illumination wave all lie in the same plane, and made a

rather comprehensive study of the effect of varying various parameters

on the amplitudes of the diffracted waves. They considered both trans-

mission and reflection holograms.

The analysis which we shall employ to compute the amplitudes

of the diffracted waves will be based on the scalar %pproach, and hence

will be similar in many respects to that employed by van Heerden (13)

and Leith et al (8). There will, however, be a number of significant
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gcneral case where the wave vectors of the two original exposing plane

waves and the wave vector of the illuminatiL.n plane wave may have

arbitrary direction6, being restricted only to being incident on the

hologram plate from the same side (since we are considering transmission

holograms). Furthermore, we shall account for attenuation within the

emulsion layer, as well as reflection losses at the different interfaces.

Our basic analytic trtatment of the problem will consist of

deriving general expressions for the power in the first order diffracted

waves, for the case where the grain density varies sinusoidelly with

position, which corresponds to considering the grains associated with

any one of the basic periodicity terms in equation 1.9. This is done

in the following section (Section 4.2). Supporting and extending this

analytical work is an experimental study dealing with holographic dif-

fraction gratings, formed by recording the interference pattern generat-

ed by two plane waves. Due to the nonlinear response of the film, the

variation of the grain density in the experimental gratings is not

sinusoidal. This, however, presents no difficulties as it is eaoily

handleo within the fra-ework of the analysis of Chapter One. The re-

sult is si.ev y the appearance of additional periodicities which can

be treated independently of the basic pericdicity under consideration.
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In this section we shall be interested in summing the waves

scattered by all of the grains within an emulsion layer having a grain

density of the form

D - D + D cos[(Rl - R 2 ) ' + 0 - 0 2 (4.1)

for 0 < Z < T , where T is the thickness of the emulsion layer. We

shall assume that the emulsion layer is illuminated by a plane wave, and

that k k2 ' and 02 are constants,

The assumption that each grain acts as an independent scatter-

er allows us to group the grains in any convenient manner when summing

the scattered waves. A particularly convenient way of doing this is to

first sum over x and y and then sum over z . We saw in Chapter

One that the field produced by the waves scattered by the grains lying

between z and z + dz consists of a series of plane waves, whose

directions are specified by equations 1.26 and 1.28. The number of

plane waves produced corresponds to the number of allowable values of

N in equation 1.28, with one additional constraint, which is that when

the variation of the grain density in the transverse direction is sinu-

soidal, the second and highei uraer waves will be absent. This is dis-

cussed in Appendix VI. It can be seen from equation 4.1 that this is

the case here, and hence we need consider only the two first-order

waves produced by the grains in each infinitesimal layer of the emulsion.
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First-order waves depend Jnly or. the direction and wvelength or the

iliuninatiun wave and the spacing and orientation of the loci uf cun-

stant grain density, none of which are a function of L . ',as there

will be only two p]ane waves produced when the emulsion ]1r iN-

luminated by a plane wave. Each of these two plane waves :azf be thought

of as being a superposition of a numter of plane waves havino the same

propagation vectors kd but different amplitudes and phases. Each of

these component plane waves is associated with a different "layer"

within the emulsion volume (i.e., with a different value of z ). Thus,

if E(z)dz is the complex amplitude of the wave resulting from the

scattering by the grains within the region between z and z + dz

then the total amplitude E of the wave is

T

E E{ .z)dz

0

It will be convenient to write L in the form

T

= g[ A(z) e10(Z)dz (4.3)

0

wriere the function g accounts for all factors which are not a function

of z, and A and 0 are real functions.

We shall assume that g is proportional to the amplitude Ei

of the illuminaton wave and to the number of grains contributing to a

unit area of the diffracted wave under consideration. Thus g will be
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propor'ional to bO and to ./n d , where n is the z direc:ion

of the diffracted wave. The factor 1/nd  accounts for the in-

creased number of grains contributing to a unit area of the diffracted

wave by virtue of the inclination of the diffracted wave with respect

to each elemental "scattering layer" within the emulsion volume.

It is clear that mince we are adding the amplitudes of the

waves scattered by the individual grains in certain specific directions,

the angular dependence of these waves should be accountci ior. We know

from the solution of the problem of dettrmining the field scattered by

such simple objects as spheres, elliptoids, discs, etc. (50) that the

amplitude of the scattered fieldb often exhibit a variety of lobes and

nulls which are a function of the size, shape and orientation of the

scattering particle as well as of the polarization of illumination

wave. Thus, if the grains are all identical, then the function g will

be prouorti-el to some f"unction F which _"aoiAn for the aula de-

pendence of the field scattered by a typical grain. If, however, the

grains have different sizes, shapes or orientations, then the angular

dependence of the field scattered by each grain will be different. In

our analysis we treat each grain as 'veing Identical, and for the case

where the actual silver grains within the emulsion layer are quite dif-

ferent frc= ;nc a.c&.he, o. lo uiuai~y the case (5)), then we take as

a model an emuliion layer containing identical grains whose character-

istics represent the average characteristics of the various different

grains.
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In the bnalysis which will be uresented her, we will assume

that the avragng the radation. pattLrns of the different grains is

such that we can regard the function F to be a constant. Thus, we

can write the function g in the form

CE D
g 1 io(.4nd

where C is a constant.

4.2.1 Attenuation

In this section we wish to determine the function A(z) ap-

pearing in equation 4.3. It is clear that A(z) will depend on the

atte:iuation of the emulsion layer, which will be a function of position.

Tus the attenuation suffered by a wave passing through th . 3i-,c.

layer will be a function of the particular path along which the attenua-

tion is computed. However, any measurements which ye are likely to

make will involve a collimated beam whose diameter is much larger than

the fringe spacing d , and thus the variations in attenuation will

effectively "average out," and the attenuation can be accounted for by

some "everege attenuation conttant" o . We shall thus assume that the

dependence of A(z) on the attenuation can be expressed in the form

A(z) - L(z) (45)

where L'(z) is the total path length uithin the emulsion. The path

length L'(z) is composed of two parts, namely the distance traveled



by the iluminiation wave In reaching the scatturing layer at the deptin

z and the diata!Ce t1'aveied by the d# ffracte4 wavc iii gin_ fro u, tht

scnttering layer to the edge of the emulsion at z w T It is quite

straightrorwvrd to shov that

ni " n

where n and n are the z direction cosines of and ed , the

unit vectors pointing in the direction of the illumination and diffrac-

ted waves, respectively (within the emulsion layer).

4.2.2 Phase Factor

The phase factor O(z) , it is recalled, represents the phase

difference between the wave generated by the grains in the layer be-

tween z and z + dz and the wave generated by the grains in the

layer-adjacent -to -the emulsion surface, plane, t - 0- . There are two 1

factors which contribute to the phase difference. First, there will,

in general, be a path length difference between the two cases by

virtue of the fact that the diffracted wave is "generated" at a dif-

ferent ,ipth vit," the ek"l ,-. Ca,.. nd second, there may be 'I

inclination of the "fringe planes" which will result in a phase shift

due to the renulting "displacement" of the loc of maximum grain

density, which will increase linearly with L . The phase shift due

to a "displacement" of the fringe plantes was computed in Appendix IV

in connection with the problem of translation sensitivity with mul-

tiple wave reference beams as discussed in Chapter Three. The reavlts



of this anaiysis will nut be used here, but instead, &n qpprot'h similar

to thAt uaed in 5driun .3A.- to genv talized g,"t-na euatiots

will be employed.

Let us begih by considering the graina lying in thte layer be-

tween z and z + dz. if we use the 4z coordinate 4-ste r 4rflrred

in Section 1.3.3 then the loci of meximum grain density wili be lines

parallel to the x axis, spaced a distance d apart. Since the di-

rections of the two first-order diffracted waves are defined by requir-

ing that the phase difference between the waves scattered by any two

grainc whoae y cocrdinates differ by d be 2v , the phase of the

individual scattered waves in directions of the two first-order dif-

fracted waves will vary linearly with y , being of the form -f .
d

It is clear that since the grain density also varies with y with the

period d , when we add up the contributions to the two first-order

diffracted waves by all the grains in the layer, the phase of these

diffracted waves will be equal to the phase of the waves scattered by

the grains located at positions of maximum grain density.

Thus, since we are interested only in a phase difference, we

can neglect such factors as phase shifts -0 w o" %catterinA? and com-

pute the phase factor O(z) strictly in terms -i path length differ-

ences. We can write O(z) in the form

O(z) u - (L(z) - L(O)) (h,7)
i
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where L(z) Is the path length from an arbltr ry vaverornt of the 11-

luminatiob plane wve to mn. arbitrar, wavefront, of the diffractc-d planr

wave under conideration, wherr the acattering t-kes place from any

grain in a plane of maximum grain density which is located at a depth

. Although phase differences of 2N' (N mn integer) are not of

significance, it in most convenient to compute L(z) using the same

pline of maximum grain density, so that 0(z) will be a continuous

function.

In cumputing L(z) , we shall mAke use of the analysis of

Section 1.3.4, and define the path length of interest in terms of the

planes A and B defined theiein. We rezall that plane A is normal

to the wive vector of the illumination wave, and is loceted on the inci-

dent side of the emulsion layer, while plane B is normal to the wave

vector of the diffracted wave under consideration and is located on the

opposite side of the emulsion layer. In general the region surrounding

the film plate will nave an index of refraction differing from that of

the emulsion layer and its supporting substrate, and hence refraction

will occur at the various interfaces. We find, however, that this does

not affect 0(z) , a the path length differences which yield O(z)

occur solely within the emulsion layer. Thus we can assume, without

loss of generality, that the surrounding medium has the same index of

refraction as the emulsion layer.

The path length L(4) is given by equation 1.24, which we

shall rewrite here with r replaced by i(z) , the position vector

of a point lying in a plane of maximum grain density at a depth z
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L(z) (4, - 1 * A)e rz~

Using c,4jtjlona 4.7 and 4.8, the expr"Asion for 0(t) bc-, ,=

2,e2... .((z ,-c c , t4.lI

where A, is the wavelength =f' thc lu :tLun wave within tht

emulsion layer,

The ve-tor ;(z) - ;(0) is a vector pointing from a point in

a plane of maximum grain density wUth z coordinate v'qual to zero to

another point in thia same plane with z coordAnate equal to z . In

actuality, the value of O(z) is not changed if we simply use a plane

of constant grain density, rather than a plane of maximum grain density.

The planes of constant grain density are defined by

where r is the position vector, C is a constant and e1  and e,,

are unit vectors pointing in the directiors of k. and k in

equation 4.1.

It is clear that since both (z) and (O) satisfy

equation 4.lO for the same vulue of C , we can write

(1; " - (0)) - 0

It is convenient to express both the vectors (;l - e2) and

(C(z) - i(O)) in the xyz coordinate system, which is defined so that



128

the vector (i - e2) has no x component (see Section 1.3.3). In

1 2

th.1 cordinate system we Cuf write

e - e - ;21 co - - ;21 sin y (4.12)

where I 'a the inclination angle of the fringe planes, defined as the

angle the normal to the planes of constant grain density makes with the

plane of the eulsion surface. Similarl, we can write

; - A() + Ay y + z; , (4.13)

where 6x is arbitrary and Ay is a function of y and z . We can

evaluatp hy by using equations 4.12 and 4.13 in equation 4.11. That

is

I 1 - I 2y cos y- -; 2 Jz sin y • 0

and hence

Ay z tan y . (4.15)

Thus, using equations 4.13 and 4.15 in equation 4.9, the expression for

O(z) becomes

O(Z) I L(xe + z tan y e + z; H; (4.16)
x y z d

1

cr

c(z) + i [Bx(Li " id) z(m l - ind) tan y + z(n- n )] (4.17)

i d i i m
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where i, m and n are the x. y and z direction cosines in the xyz

coordinate system. In this coordinate system, the x direction cosines

of the illumination and diffracted waves are equ&l (equation 1.26) and

hence the coeffitient of Ax i zro, nd V(zA bectares

0(z) M j±. [()i - ) tan y + (n ) (18)

4.2.3 Integration Over z - Summing the Fields Generated at Different

Depths Within the Emulsion Layer

Making use of equations 4.5, 4.6 and 4.18, the integrand in

equation 4.3 can be written in the form

A(z) eio(z) . eaT/n d e (4.19)

-where -v -a eomplex valued function which is independent of z

w = a + ib (4.20)

where

a =1 (4.21)

and

b a ( m i - md) tan y + (n i - nd)] (4.22)

The integral in equation 4.3 is thus easily evaluated to yield the

following expression for the amplitudes of the first order diffracted

waves:
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E = e-aT/n, 4.23J

The power per unit area in the diffracted waves is given by F EEa

which can be expressed in the form

2 *-2aT/nd
P CD0EEe + e T- cos bT] (4.24)

nd2la 2+ b
2 )

d

where we have used the value of g given by equation 4.h and set CC*

equRl to a new constant C .

We shall not attempt to compute either C or a , but we can

obtain an estimate of the value of a for a particular grating by

making a direct measurement of the attenuetion of the emulsion layer.

The other quantities appearing in the above equation can be computed

from a knowledge of the charactcristics of the original exposing fields,

the illumination wave and the physical characteristics of the emulsion

layer.

4.2.4 Computing the Diffracted Waves

In this section we shall describe in detail the computational

steps involved in computing the amplitudes and directicns of the two first-

order diffracted waves, when refraction at the various interfaces and

reflection losses are taken into account. WP shull assume that the

initial exposing plane waves and the illumination wave are given, being

specified in the region adjacent to the film emulsion layer.
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We begin by defining a general reference coordinate ,ystem,

(x', y', z') defined so that th. imilaton layer occupiss the region

0 < z' - T. where T is the thickness of the emulsion J.Iyer. The

original exposing field in taken to be two plane waves, whose propega-

tion vectors in the region z' 0 are given by

and

0  e2 0 - .(4.26)k20 X 20

The unit ve-ctors e10  and e20 are specified by their direction cosines

in the x'y'z' coordinate system, namely X10, mlO nlO ,' and C

m10 , no0 . These two plane waves undergo refraction at the interface

between the emulsion layer and the adjacent medium, the z' a 0 plane.

If n is the index of refraction of the emulsion layer and no is the

in(ex of refraction of the region z' < 0, then the wavelen4gth in the

emulsion layer is given by

I oo ( .27)
n o

The wave vectors of the two plane waves in the emulsion layer are then

of the form

S _ (4.28)X X no 0

and

2 2, - (4.29)
2 A o n0 0 2

£
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The directions of e and e are found from e 0 and e 20 by

apPlying Snell's Law. We find that we oat e.-press the direction cosines

of 1i and 2 in term of thoae of 1l and e20 as follows:

n jo

n
0 (4. 31)

3 n jo

- / -T )  ('.32)

where j w 1,2 . Next, we define the xyz coordinate system by a ro-

tation of 9 about the z' axis (equation 1.16), where

t - tan- I 2 1 (4.33)

We observe that the same value of € is obtained if we use the fields

in the region external to the e=usion layer, since the factor n /n

will cancel in equation 4.33.

The transformation equations for the direction cosines are

given by (Appendix III)

t - cos 0 +m; sin 0 (4.34)

m j -1' sin 4, + m cos 0 (Jj.35)

n, n' (4.36)
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where j - 1,2 . By virtue of the way the xyz coordinate mystem in

defined, the intersection of the fringe planes with the z a 0 plane

are lines parallel to the x axis. The periodicity d in the z a 0

plane is the distance in the y direction between planes of maximum

grain leefsity, and i given by (equation l.i9)

d z A (4.37)
1 - 21

The fringe plane inclination angle y is the angle that the normal to

the iringe planer , makes with the y axis. Thus

-l (~yy - Cos (4.38)
y

where the sign of y is fixed by equation 4.15 and

- '1 2 (4.39)

The xyz coordl4 rate system, d , and y along with the physical pro-

perties of the emulsion layer such as its index of refraction, attenua-

tion, and thickness are adequate to specify the nature of the grating

ar! hence allow us to compute the amplitudes and directionz of the first-

order diffracted waves produced when the grating is illuminated with a

plane wave. It should be kept in mind, however, that we are still con-

sidering only the case where the spatial variation of the grain density

is sinusoidal.

Having specified the nature of the grating, let us now apply

the results of Section 1.3.4 to compute the directions of the two first-

order diffracted waves produced when the grating is illuminatec with a



plane wave (there may, of course, be no diffracted waves produced for

certain illumination waves). If the propagation vector of the

illumination wave is given by

i •  io (4,40

in the region z K 0 , then it, will be given by (after refraction at

the interface at z x o)

2w
ki -e (4.41)

i ii

in the region z > 0 , where

A %A (4.142)
i n ic

and

o (4.43)

M, 0 (4.44)

n i _a-()2 (I-n 2") (4.45)
i -n'-nio

The direction cosines of the two first-order diffracted waves are given

by (equatiorsi.26 and 1.27)

d a t 1 (4.46)

N A
md W -+ m (4.4,T)
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where N has the values *1 and -1 , corresponding to the two dif-

ferent first-order diffracted waves. The above two equations specify

nd by virtue of the relationship

k2 m 2  n 2

S d

That is

nd I  (-- m) (4.49)

where we have taken the positive sign for the square root by virtue of

the fact that we are interested in transmitted, rather than reflected

waves. This completes the specification of the quantities md, nd, d

and y in teims of the parameters of the original exposing waves and of

the illumination wave, which are assumed to be given. Thus, once we

assign values to C, D2  E iE, a and T the diffracted power can be corn-

puted, using equation 4.24. This will yield the diffracted power at

the boundary plane of the emulsion layer z a T in terms of the il-

lumination power EiE: at the other boundary surface, z a 0 , Ii

practice, however, the illumination power is specit'ied in the region

z c 0 and the power in the diffracted waves is measured after the wavea

leave the film plate, and hence it may be necessary to take reflection

losses into account.

We shall be interested in the case where the film plate con-

slts of an emulsion layer supported by a glass substrate (such as Kodak

649-f glass film plates), and thus there are three interfaces at which



reflection losses can occur. In general, however, the Index of refiac-

tion of the substrale is close enough to that or the emulsion layer so

that ref'lection lossez at the emul=ion-subatrate interface can be

neglected. This leaves two Interfaces to be considered, the front &r.d

back surfaces of the film plate.

The quantity which is of interest to us is the transmrlsviivity

T of the interface under consideration, defined as the ratio of the

transmitted power to the incident power. It is shown by Born and

Wolf (54) that the transmissivity depends only on the polarization and

angle of incidence of the incident wave, and on the index of refraction

on either side of the interface. Furtheriwmre, they utilize Snell's Law

to obtain

sin 2 e sin 20 tS t• (4.50)
2 , 2sin 2 E) + Ot) Cos (Gi -et)

-and

sin 2 0i sin 2 0t

sin (0i + 0 t )

where !, applies to the case where the electric field vector lies in

the plane of incidence and TA applies to the case where it is perpen-

dicular to the plane of incidence. In the above expressions 01 Is the

angle of incidencu of the vk,.ve incident on the interface and Ct is the

corresponding angle of the transmitted wave after refraction at the in-

terface.
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The transmiselvity or the front ourface of the "il plate can

be found using whichever of the above expresionb is appropriate (or

perhaps both if the illumination wave has an electric field vector with

components in both directions), where the ansles et and 0t are

F'iveiiby

-l
0, N Cos - (T Io (4.52)

and

et a cos- I (n )  (4.53)

where nio is assumed to be given and r,i is computed using

equation 4.45.

Similarly, the transmiuslvity of the back surface of the film

plate is found using values of 01 and 0t given by

0 - cos 1 (nd )  (4,54)

ot M Cos 1 (ndl) (4.55)

where nd is given by equation 4.49 and ndl is given by

n n2 n2) (14.56)

where n and n are the indices of refraction of the glass substrate

and adjacent medium respectively.

The diffracted power per unit area in the two first-order
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waves. taking i ito account rrflection lossoe, to thus given by

2 !
I oii id d. 2T &Tr --... 2 * - a co LT] (,.5T

P(a2+b2
d

where i and T are the transmisstvities of the front and back
d

surfaces, respectively,

4.2.5 Special Cases

In this jection we shall examine the caee where the wave

vector of the illumination wave hAs no component in tne direction of the

"rating lines" (the x 4irection), and hence where

I o - 0 (4.58)

Then, it follows from equationm 4.43 and 4.46 that

ti a td a 0 (4,59)

and hence the wave vectors of the illumination and diffracted waves all

lie in the y: plane. If we define the angle 0 by

0 = "Ain l (in) (4.60)

then

m •sin ( (4.61)

and, from equation 4.48 with t d 0
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n Cos ~.2

Ugng equations 4.61 nd 4.62 in equations 4.21 and 4.22, the exprts-

sionts for a and b become

1 1 -){ . )!

~ a ~ ..-.)(4.63)

dp

and

r u (sin i  sin 0 tan Y + (coo e i - coo ) (4.64)

or, ujirg simple trigonometric identitieL, b ca;, also be shovi, to be

equal to

2. [cos (0 - y) - cos (E) - Y)] (4.65)

X i COS d

Next, let us consider the case where we neglect attenuation losses

(u a 0) , neglect reflection l53es ( rd n 1), and let y * U (f.:.z.

p anes tormal to the vm$uliun surface). T n, equation 4.57 assumes the A

form

2 0 2niT
2CD EE {1 -cos[- (cos Cos M

p i i l (4.66)
coo 2 o [--' icos 0 Cos 2

d X,

or, using the identity 1 - cos A a 2 sin
2 (2 )

CD E E: sin (Cos 0~ - Cos C )

[.-os 0d (coso 0 - cos 0 d)]2
A
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The above expression is equal, to within a constant, to the results

obtained by Leith et al (8) focr the same case (equation 31 in reference

4.3 Producing Holographic Diffraction Gratings - Experimental

Apparatus and Techniques

In this section we shall describe the experimental apparatus

which was used to produce the >' lographic diffraction gratings referred

to in this and the next chapter. Variations of the basic experimental

setup described here were used in the experimental studies described in

Mhapters Three and Five.

Figure h.l shows a diagram of the experimental apparatus. The

source is a helium-neon laser and the optical system consists of P beam

splitter, mirrors and lenses positioned so as to illuminate the film

plate with twc plane waves. The fiim plate is held in a rotatable

holder, which allows the orientation of the film plate to be varied with

respect to the illumin&tion plane waves, which are fixed in direction

(the angle between them being 300). The various components are fastened

to the surface of a 3 x 6 foot surface plate, which is "floeted" to

uncouple the apparatus from building vibrations.

4.3.1 Source

The source is a helium-neon laser having a cavity length of

57 cm, with a 60 cm radius output mirror (Spectra Physics #7259 HT, with

collimation correction) and a high reflectance flat for the other mirror
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(Spectra Physics #8283). The CW power output at 6328 AO ranged from 1

tc 4 millwatts at I beam current of approximately 15 miiiiamps, depend-

ing on the mirror alignment and on the cleanliness of the Brewester

angle windows.

The laser normally oscillates in more than one axial mode,

and no attempts were made to achieve single mode operation. Efforts

were made, however, to limit the oscillations to the lowest order

transverse mode (by mirror adjustments) and were in general reasonably

successful. The fact that the laser is oscillating in more than one

mode implies that the coherence length of the laser output is corres-

pondingly reduced. Questions regarding the coherence length were

simply avoided by making the path lengths approximately equal by

suitably positioning the mirrors.

The laser tube was oriented so that the output beam (which is

linearly polarized) had its E vector perpendicular to the surface of

the surface plate. This choice of polarization is advantageous as it

results in higher values of reflectivity for the beam splitter and

avoids depolarizatioz. upon reflection from the mirrors. A more import-

ant reason for choosing this polarization arises from the fact hat the

film is sensitive only to the total electric field, and with this pola-

rization the electric field vectors of the two illumination waves are

colinear. With the other polarization, however, this is not the case

and when the two waves are propagating at right angles to each other

there will be no interference pattern formed (with respect to the

electric field). This is discussed in detail in Appendix I.
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4.3.2 Mechanical Stability

Before discussing the steps we have taken to achieve mechanical

stability, let us briefly review the reasons why it may be necessary to

insist on a high degree of mechanical stability in a hologram-taking

opparatus. In recording a hologram, we are in essence recording an in-

terference pattern which is quite sensitive to path length changes. To

be assured of an adequate recording of the interference pattern we must

require that the film plate remain in register with the interference

pnttern to within at least one quarter of a fringe during the duration

of the exposure. It is clear that the stability requirements are di-

rectly related to the exposure time, which for the apparatus described

he-e ranted from several seconds to more than one hour.

A change in register of the film plate with respect to the in-

terference pattern can be caused by either a movement of the film plate

or by a shift of the interference pattern. While t;, effect of the

former is propcrtional to the spatial frequency of the interference

pattern, the latter is not. Indeed, a path length change of X will

cause a shift of one fringe regardless of the fringe spacing. Such path

length changes can be caused by similar changes in the position of the

reflecting elements in the optical system that encovnter the beam after

it has been divided (beamsplitter and mirrors). Changes in the optical

path length that occur prior to the beamsplitting operation are not

important.

In the apparatus described here, all components are rigidly

mounted and securely fastened to the surface plate. The surface plate,

£



which weighs approximately one thousand pounds, provides structural

rigidity as well as Inertial damping for the system. The surface plate

is isolated from mechanical vibrations in the floor of the building by

supporting it ot, a layered structure of felt, neoprene sponge rubber,

plywood and low presaure rubber inner tubes. Mewurements mAdv by

J. Azmuth (55) on this system in the 20-20,000 CPS range have shown

that the peak surface plate acceleration is approximately 1/28 that of

the nearby floor. Isolation from acoustical vibrations is accomplished

by covering the components with felt covered boxes. This also reduces

the effects of air turbulence.

The apparatus, as described above, was found to be very

stable. Holograms were obtained using it in which the exposure times

exceeded one hour. Holograms were also obtained with the table

"unfloated," with exposure times of the order of five minutes.

4j.3 optical Components

The Dptical components consist of the beam splitter, mirrors

and the two collimating lens systems. The beam splitter is simply a

4 1/2 inch diameter quartz plate, .242 inches thick, with a wedge

angle of 47 seconds. It yields two primary beams of equal intensity

when the angle of incidence is 75 degrees, with 40% of the power being

lost due to multiple reflections. The mirrors are high quality front

surface mirrors (Davidson Optronics Model D615). It was found that

ordinary front surface mirrors (coated select plate glass) often exhibit

what is referred to as the orange peel effect, which is evidenced by a



mottled appearance of the reflected beam.

The two collimating lens syst*ems. were nie4tta1; P-ach can-

sisting of a 16 mm microscope objective lens and a 6" ap'mrture 19"

focal length lens, placed so that their focal planes coincided. It Wes

found that invariably dust or Qther -aFll partieles wculd be present on

the surface of the microscope objective lens or on the mirrors, and

that these particles generated diffraction patterns that caused rapid

amplitude variations across the beam. These effects were removed by

placing a small aperture, or "pinhole," at the focal point of the

microscope objective lens. The operation of the pinhole is readily ex-

vlained in terms of a low pass spatial filtering operation, using the

analysis contained in Appendix V. It was found that pinholes with a

diameter in the range from 10 to 30 microns were quite satisfactory

(the pinholes were obtained from Buckbee Meers Inc.). Accurate position-

ing of the pinholes was required (to within at least .001 inch in all

three directions) and this was achieved by using three-dimensional

micropositioners (Kulicke and Soffa Model 200).

Although the low pass spatial filtering operation eliminated

the rapid amplitude fluctuations across the beam, there was still a

slow variation due to the decrease of amplitude with radius which is

characteristic of the lowest order transverse modc of the laser. This

produced a decrease in the power of an order of magnitude at a radius

of 3 cm when a 16 mm microscope objective was used.



4.4 Measurement of the Power in the Diffracted Waves 42erimental

Apparatus and Techniques

in this 6ectlon we shall describe an erperimentai apparatus

whose function is to measure the direction and power of the various

diffracted waves which are produced when a hologrphtc diff'raetion

grating is illuminated by a collimated beam. A diagram of the appara-

tus is shown in Figure 4.2, from which we see that the apparatus con-

sists essentially of a source to illuminate the grating and a detection

system to measure the power in the diffracted waves, The photomultiplier

can be rotated about the vertical axis only, and thus we are restricted

to measurements in which the illumination wave and the diffracted waves

all have their propagation vectors in the same (horizontal) plane.

The device used to hold the grating and photomultiplier is a

converted spectrometer. The grating is mounted on a rotatable table

which in turn is mounted on the spectrometer table. The use of this

additional rotatablf. table, whose rotation with respect to the illumina-

tion beam can be measured to within 5 minutes of arc, allows the angle

of incidence of the illumination beam to be read directly, without

being dependent on the angular position of the viewing telescope.

The photomuitiplier, an RCA 710P, is mounted on the body of

the viewing telescope of the spectrometer, which can be rotated to pick

up the various dilffracted orders. The spectrometer is of quite high

quality, and the angular position of the viewing telescope, and hence

the photomultiplier, can be read to within one minute of arc. In mount-

ing the photomultiplier on the viewing telescope, the objective lens
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was retained but the eyepiece assembly was replaced by a small aperture.

By m4king this aperture sufficiently small, the angular senetlvity of

the detection system could be made equal to the accuracy of the gradu-

ated circle, which was one minute of arc. In practice, however, we

found it convenient to use a larger (.078" diameter) aperture, which

yielded an angular sens'tivity on the order of 20 minutes of arc.

The source was a helium-neon lamer which produced a linearly

polarized output beam at .6 328u . A Spectra Physics polarization ro-

tator was used to enable us to illuminate the grating with any desired

linear polarization.

4.4.1 Photomultiplier Detection Sstem

A phase sensitive detection system was employed which allowed

the detection of very low signal levels. The output beam of the laser

was chopped at- about -0 3 S,-with -the chopper prov~dtng a-rererenee

signal at the same frequency, which remains in phase with the chopped

laser beam. The output signal from the photomultiplier is detected by

a lock-in amplifier (Princeton Applied Pesearch Model JB-5) which utili-

zes the reference signal generated by the chopper to discriminate against

that portion of the signal from the photomultiplier not in a narrow

frequency band centered at 103 CPS.

What was desired was the atility to detect signals having a

wide range of power levels, from 1 milliwatt (the power level of the

direct laser beam) down to 10-6 or 3O"7 mw. Rather than have the input

to the detection system vary over such a large range, this range was
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achieved by the use of neutral density filters, with the input to tho

photomultiplier varying only over one order of magnitude. What was

done was to position the photomultiplier so as to pick up the dirert

laser beam (with no grating in place) and then set the photomultlplier

voltage and lock-in amplifier gain so that the meter on the lock-in

amplifier read 100 with a neutral density of 5 in front of the photo-

multiplier (five N.V. filters of N.D. u 1.0). Weaker signals could then

be read by appropriate removal of neutral density filters. This gave a

reliable range of readings over 60 db, with an additional range of 10 db

corresponding to meter readings from I to 10 with no neutral density

filters in the beam. This method has the additional advantage that the

data is automatically normalized with respect to the power in ttit.

illumination beam.

The sensitiv'ty of the system could be increased in two ways,

either by increasing the photomultiplier voltage and working at lover

signal levels or by increasing the laser power. This latter method, of

course, is most desirable but one is limited by the power output of the

lasers that one has available.

A number of different helium-neon lasers were used in the

setup, and there was a fairly wide rae in the stability of the output

power between the different lasers. The instabilities were observed to

be of two types, slow long term drifting of the power level and rapid

noise-like fluctuations. The long term drifts could be corrected by

periodically resetting the photomultiplier voltkge &nd the rapid

fluctuations could be allowed for in reading the meter, provided the
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were not too large. It i estimated that together these erfectf

limited the accuracy of' the readinga to about 45% fur the worst cases.

. 4, Belatin4 the Measured Power iatio to the litudes of the

Diffracted Waves

In the analysis of Section 4.2 it was assumed that the grating

was essentially infinite in extent and was illuminated by a plane wave

which was likewise infinite in extent. The amplitude of the diffracted

plane waves were then computed and the power per unit area was computed

by taking the sqcuare of the amplitude of the diffracted wave. In the

experimental apparatus described here only a portion of the grating is

illuminated, and this with a collimated beam whose amplitude varies

across the beam, The ratio of the total power in the diffracted beam

to that in the illumination beam is what is measured, and from this we

wiish to detemr in. the power per tanit area in the diffracted beam.

normalized with respect to the square of the amplitude of the

illumination field.

Let us define (x', y'), (x,y), and (x", y") to be the trans-

verse coordinates of the illumination beam, the grating and the diffract-

ed beam, respectively. The amplitude of the illumination beam will be

some function of x', y', which we shall denote by Fi(x', y') , and

the total power in the illumination beam will be of the form

pi " c J J EiE* dx' dy' (4.68)

x y



where c is the appropr~ate constant and the integration extends over

the croo sectional area of the illumination beam. Likewise, if

Ed(x", '") in the amplitudr of the diffracted field under ronaider%-

tion, then the tot.il power in the diffracted beam Is of the form

Pd C Ed, dx" dy" (4,69)

where the integration extends over the cross sectional area of the dir-

fracted beam and the constant c is the same constant appearing in

equation i.6f , We Rassume that the characteristics of the grating are

constant over the illuminated area and hence that the variation of Ed

with x", y" is due solely to the variation of Ei across the ilhum-

inated portion uf the grating. We can thus write p. in the 1orm

cK E E, dx" dy" (4-70)
Pd cK ( 1, 7

where

Ed ddd• (4.71)

We observe that the illumination beam and the diffracted beam share the

same area of the grating, and that we can write

Pi a cni iJ EIE* d. dy (4.7Z)
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and

pa cKnI EIE dx dy (4.73)
x y

where ni  and nd  are the z direction cosines of the illumination

and diffracted beams, respectively. The quantity which is meaetred,

pd/Pi $ is thus of the form

nE *Pd nd Ed~d

Pi n i  I E

We thus have Lhe choice, in comparing the measured power ratio Pd/pi

with the computed power as given by equation 4.57, of converting the

measured data by multiplying by the factor n /n d  or of computing
n d P
S rather -than -PE In genera ve thmlJ do the latter, since

it merely requires e- simple change in the computer piogram. Thus, what

we will wish to compute is

C Tde-2aT/ndSd • 2  22aT 2 aT cos bT] (4.75)

n = nid(a + b+

where we have absorbed the factor D2  in the constant c
0
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4.5 ZQ -eriieita1 Study of Holopranhic Diffraction Orais

In this sectioa we shall consider the dependence of the power

diffracted It.to the first-order waves on the direction, wavelength and

polerization of the illumination wave, as well as on the characteris-

tics of the jwzticular grating being conaidered. In particuilar, we

shall discusi a number of measurements that were made and compare the

experimental data with the theoretical valu.s computed using the

analysis devcloped in Section 4.2. A brief description of the results

of some of these measurements was reported in a previous publication (9).

The application of the analysis of Section 4.2, which deals

with the case where the variation of grain density is sinusoidal, to

tht case of a holographic diffractior grating, is quite straightforward.

According to the analysis developed in Chapter One the grain density of

a hologram formed by recording the interference pattern generated by

tw plane -waves cane written as a sum of sinusoidal terms, the lowest

crder of which generates the two first-order diffracted waves. By

virtue of the assumption of the neglect of multiple scattering,

the waves generated by the grains associated witn the different

sinusoida.l terms can be dealt with separately, and hrsice the problem

reduces to the problem considere- in Section 4.2. We observe, however,

that we have not as yet specified the constant Do appearing in

equation 4.1 and t.us we can only compute the power in the diffracted

waves to within r multiplic;itive constant. In comparing theoretical

and experimental results, this constant will be chosen so that the

two cases agree at some convenient point.



The holographic diffrak'ion gratings that are described in

this section were made using Kodak 649-f 3 1/4 x 4 1/4 x .040"

glass film plates, and were processed in the same manner. The pro-

ceasing procedure vwo:

5 minutes in d-19 developer at 70 f

30 seconds in a 1.65 percent acetic acid stop bath

5 minutes in a fixing solution (T57 cc paper fixer,
355 cc ammonium thiosulfate, and 3,030 cc distilled
water)

.O minute rinse in distilled water.

Constant agitation was maintained throughout anA *he -Iatc: -.ere air

dried.

4.5.1 Orientation Sensitivity

We have seen in Section 4.2 that the amplitudes of the

diffracted waves depends on how well the waves generated by the grains

__ at variou' depths with the emulsion layer add in pha and that this

in turn is a function of the direction of the illumination wave. In

this section we shall consider a specific grating, and we shall mea-

sure the power diffracted into the first-order waves as a function of

the direction of the illumination wave. We will then use the analysis

developed in ^ection 4.2 to compute the diffracted power, and then we

shall compare the experimental and theoretical results.

The grating which will be considered was made using the

apparatus discussed in Section 4.3, with the two exposing plane waves

(with X - .6 328p) being incident on the film plate at eic- + 150



155

and -io" 150, respectively. This produced a grating whose fringe

planes a*e perpendicular to the emulsion surface (y u 0) and whose

fringe spacing d in the plane of the emulsion surface is equal to

1.223Y (equations 4.37 and 4.61).

Thio grating was then illuminated by a collimated laser beam

(A a .6 328) and the ratio of the power diffracted into each of the

two firt order diffracted waven to the illumination power was measured

as a functf.on of the direction of "he illumination beam. The prop-

agation vactor oE the illuminatlon wave was restricted to lie in the

plane of the two original exposing waves (i.e., 1,,X 0) in order

that the wave vectors of the illumination wave and diffracted waves

would all lie in the same plane.

The experimental results are shown in figure 4.3, where the

power ratio is plotted as a function of 0io' the angle of incidence

(defined by equation 4.61) of the illumination wave prior to refraction

at the emulsion air interface. Three experimental curves are shown,

one for the zeroth order (the direct transmitted beam) and the other

two for the N = - 1 first-order diffracted wave - one with the

emulsion side facing the illumination beam and the other with the

emulsion side away. The N a + 1 curves are not shown as they were

simply the mdcror images of the N n - 1 curves with respect to the

origin. In all three cases the illumination beam was linearly polar-

ized with its electric field vector perpendicular to the plane of

incidence.

Also shown in figure 4.3 is the theoretical curve, computed
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using the analysis of Section 4.2. The quantity which vas computed

was pa/pi a given by equation 4.75, which is the ratio of the

tn4rl pnwer in the diffracted wv_ ndtr coraideration to the totAl

power in the illumination beam. The calculations were done numeri-

cally, using a digital computer and plotter, with points being computed

every 10th of a degree over the range or 0 of Interest.

In order to carry out the calculations, it was necessary

to assign a value to the constant C appearing in equation 4.75, as

well as to specify o(the attenuation constant), T(the emulsion

thickness), and n(the index of refraction of the emulsion layer).

The constant C was chosen 30 the maximum value of the computed value

of pd/Pi was equal to the maximum measured value. The attenuation

constant a was estimated from the attenuation suffered by the trans-

mitted portion of the illuadnatn beam, at e o 0, and found to be of

the order of .l -  for the grating under consideration. The emulsion

thickness of the 649-f plates before processing is 15P , but shrink-

age occurs during the processing procedure, with the result that the

emulsion thickness T is somewhat less then 15P. The index of

refraction of the emulsion layer was taken to be equal to that of the

gelatin matrix of the emulsion layer, 1.5e (66).

The value of T used to generate the theoretical curve

shown in figure 4.3 was 12u . This value was determined by comparing

a number of similar computed curves (with T w 5,6, ... , 15) with

the experimental data shown in figure 4.3. It was observed that the
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effect of varying T was to change the number and width of the various

maxima, with the width decreasing and the number of secondary maxima

increasing with increasing T . The location of the central maxima

did not vary with T to any significant extent.

The errect or a on the shape of the theoretical curve was

also investigated, and it was found that the difference between a a 0

and a z .ljw was slight, amounting to a slight filling in of the

nulls and a slight suppression (less then 2db) of the secondary maxima.

The difference in the region of the central maximum was negligible.

As a is increased the filling in of the nulls and the suppression

of the secondary increases, and becomes rather pronounced at a a 1 -

The shape of the central maxima remains essentially unaffected as do

the secondary maxima on either side of the central maximum.

An examination of figure 14.3 shows that the agreement of the

theoretical curve and the experimental curves is quite good in the

region of the central maximum. Outside this region the agreement is

not quite as good but the general nature of the curves is the same.

The difference between the case where the emulsion side fsces the beam

and the case where the emulsion side is away from the beam is consider-

able, and appears, perhaps, to be due to a decrease of grain density

with depth, due perhaps to attenuation within the emulsion layer during

exposure of the film plate (the amplitude attenuation constant for an

undeveloped 649-f emulsion layer was measured and found to be .0221"-)

and/or a decrease of development activity with depth during the pro-

cessing of the film plate. These factors are outside the scope of the
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analysis presented here and will not be considered further.

The shape of the zeroth-order curve can esily be explained

by attenuation within the rasion layer and reflotion losoes at the

interftces, except for the two humps at =  150. These anomalies,

which have aso been observed by Leith et al (8). do not appear to

be explained by the analysis presented here.

We observe that the maximum diffracted power occurs when

0IOU 1 150, depeuding on which diffracted order is being considered.

These are the two angles of incidence of the original exp ing plare

waves. We shall consider this point in 5ome detail &hortly (S6.ction

4.5.3), but before doing so we shall examine the polarizeat.oa depen-

dence of the ratio of the power diffracted int th' rirt-order waves

to the power in the illumination beam.

4. 5.2 Polar-kzation Depeenee

In order to examine the polarization dependence of the

power diffracted into the first-order waves, measurements were made

with the electric field vector perpendicular to the plane of incidence

and parallel to the plane of incidence. The results, for the case

where the emulsion side is facing the illumination beam, are shown in

figure 4.4. In making these measurements, the polarization was changed

at each value of 0io with a polarization rotator (figure 4.2).

The curves shown in figure 4.4 contain the effects of re-

flection losses at the different interfaces, which differ for the two

polarizations. Figure 4.5 shows these same two curves with the re-
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flection losses divided cut, elth the power ratio normalized to one

at ibe maximum vaiue. The conversion of the data was done with the

aid of a digital computer, and aounted to dividing each data value

by the transmi3sivity of the front and back interfaces, which were

computed for each value of Q using the analysis outlined in Section

4.2.4. In making these calculations the index of refraction of both

the emulsion layer and the supporting glass substrate wLs tacen to be

equal to 1.52, and multiple reflections were neglected.

We observe from figures 4.4 and 4.5 that the difference

between the two polarizations is rather small for the par.ticular case

which we have considered. There is, however, an observable difference

and it may well be that for a grating having a different fringe spacing

d or a different thickness T that this difference may be greater.

Burckhardt (53), in his paper dealing with the diffraction of a plane

wave at a sinusoidally stratified lossless dielectric grating, pre-

sents a rigorous solution of the problem of computing tha amplitudes

of the diffracted waves when the fringe planes are perpendicular to

the emUsion surface and when the propagation vector of the illumi-

nation wave has no component in the direution of the grating lines.

]1is results indicate that the difference in the maximum diffracted

power for the two polarizations increases with increasing T and de-

creasing d. Burckhardt also shows that in all cases the diffracted

power is greatest when the electric field vector is perpendicular to

the plane of incidence. We see from figures 4.3 and 4.4 that this is

the case for the grating under consideration here, with the maximum
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diffracted power being about 1/2 db greater for the cauc whvre the

lectric Afield vcto~r is ~..to the plae of ncd.nc. A

similar result was ubtained with the emulsion side away from the illumi-

nation beam.

WP recall that in the wnslyis dev*:lvped In Section .Zj,

the polarization of the illumination wave entered in the analysis

through its effect on the individual scattered waven produced by the

various grains within the emulsion layer, We made the approximation

of neglecting the angular dependence of these individual scattered

waves, as well as the effect of different polarizations of the illumi-

nstion wave. It appears from tbe experimental resultA shown in figures

4.3 and 4.4 that the neglect of the polarizttion dependence is quite

a reasonable approximation, at least fo.- gratings whose thicknesses

end fringe spacings are of the order of those considered here.

4.5.3 Gratings with Inclined Fringes - Brag Condition

We recall "rom Section J.3.5 that when we illuminate a

grating with one of the two original exposing pl-ne reaves, one of the

two-first order diffracted plane waves has the same direction and

phase (except for n phase factor of -w ) as the other original ex-

posing wave. We now wish to show that the analysis developed in

Section 4.2 predicts that the power diffracted into that particular

first-order wave is a auinum for this case.

The power per unit area in the first-order iiffracted waves

is given by equation 4.24, and is of the form
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-2T/n lpaT
PC~2 I+ - 2e cos bT)

n2 2 + b2L)
d a +

where we have absorbed the various multiplicative constants ir the new

constant C' It is clear that if a = 0 (so that a a 0) and the

factor 1/n2 is presumed to be slowly varying, then P will be a

maximuma where b - 0 . The quantity b is given by equation 4.22 for

the general case (no restrictions on the direction of the illumination

wave other than n > 0) and by (equation 4.65)

b = 2i, C cos (ei -y) - cos (Od - y)] (4.77)

for the case when the propagation vector of the illuminatiLn wave lies

_in the plane of the wave vectors of the two original exposing waves

(i.e., when 1. = 0). It sufficies to consider the expression for b

given above, as we are interested in the case where the illumination

wave is the same as one of the two original exposing waves.

The fringe plane inclination angle y is given by

Y 1 2 (4.78)2

where eI1 and G 2 are the angles of incidence (0 defined by equation

4 61) of the two original exposing plane waves after refraction at the

emulsion air interface. Using the expression for y given above,

equation 4.77 becomes
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b ,cos (0 -' Cos ( (- -. 79)+ - 2I  d 2 2'
L i U os - --ie

Let us now consider the case where we let o i = 1 We are interested

in the first-order wave for which 0 d E2 (equation 4.37, 4.47 and

4.61). We observe that substitution of 0. a 0i and E)d a *2 in

equation 4.79 yields b = 0 . The same result is obtained for

0i * 02 and 8 d  z 0 1 ,

Thus, apart from questions regarding the effect of a, a, and

nd  in equation 4.76, we observe that the maximum diffracted power is

obtained when we illuminate the grating with one or the other of the

two original exposing waves, depending on which of the two first-order

waves is being considered. The effect of a, a and nd on the location

cf the maximumdoes not appear to be too significant for the gratings

which we have considered, judging from the numerica-i calculations we

have made, and will not be considered further here.

The above results; are equivalent to the results obtained by

Leith et al (8), and are in agreement with the results of van Heerden

(13) and Burckhardt (53). As has been noted by a number of authors

(8,9,53), the above results can be stated in te -ms of Bragg reflection

from the planes of constant grain density. Bragg's law, or the Bragg

condition, is simply a statement of the conditions on the angle of

incidence, wavelength and distance between the pa-allel planes for

which the waves reflected from the different planes add in phase. We
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can express Bragg's Law in the form (67)

sin I " .8'

where T i1i the angle the illumination wave makes with the parallel

planes, A is the wavelength of the illumination wave (within the

structure), d' is the distance between the planes, and N is an

integer.

It is straightforward to show that when 0 equals either

01 or 02 , the Bragg Condition is satisfied. Suppose we let

i a 1 , then Y, is given by

T, a 0 y (4.81)

or, using equation 4.78 for y

81 8

V, a a" "1 "2 (4.82)
AT --

In order to have Bragg reflection, the angle of reflection of the dif-

fracted wave must equal the angle of incidence of the illumination wave.

This requires that Yd = " , where

T d = 0d - y .(4.83)

V"- recall that when 0, 01 0d a * 2  for the first- order diffracted

uAve of interest. Thus

d m 02 -Y * (484)
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oi., using equation 4.78

-0 a (4.85)
d 2 2

and hence Td aIi as required. The distance d' between the planes

of maximum grain density i griven by (equation 1.62)

d' - (4.86)
2 sin (1 2 (

ara hence, substituting the expression for d' given above in equation

4.80, we see
0 1  - 0 2,sin Y -N sin 2 (4.87)

An examination of the above equation and equation 4.82 shows that the

Bragg Condition is satisfied, which is what we wished to show. A simi-

lar result is obtained when we let 0, 0 2

A number of different holographic diffraction gratings were

made having different fringe plane inclination angles y . These

gratings were made using the experimental apparatus described in

Section 4.3. The beam spread angle 810 - 020 (prior to refraction)

was held constant at 30 degrees, and the film plate holder was rotated

in steps of 10 degrees to provide a range of values of y , as shown

in Table 4.1.

The variation of the power diffracted into the N = -1 first-

ord - was measured as a function of 0io for each of these gratings,

and the results are shown in Figure 4.6, with the power ratio PI/Pi
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being normalized to I at the maximum value for each grating. The solid

curves are the corresponding theoretical curves (computed using equation

4.75 and the Malysis outlined in Section 4.2.4), which "ve been shifted

horizontally to yield the best fit, and where the constant C appearing

in equation 4.75 has been chosen so that the maximum computed value of

p/P i is equal to 1. The amount of horizontal shift for each curve is

shown in the last column of Table 4.1.

We observe that, apart from the observed shift of the loca-

tion of the peaks, the theoretical curves are in excellent agreement

with the experimental data. The broadening of the curves with increas-

ing y is due to the increasing value of d . The cause of the shift

in the location of the peaks is not clear, but may be due to emulsion

shrinkage effects. Another possibility is that the .ctual index of re-

fraction of the emulsion layer might be different from 1.52, which was

he -value used in -the -eomputations. Our -numerical computations- show

that changing the index of refraction changes the location of the peaks.

Neither of these two effects was investigated in detail and we shall

not consider these points further here.

4.5.. Varying the Wavelength of the Illumination Beam

In the measurements discussed in the previous sections, the

source was a helium-neon laser, and hence the value of A was fixed

at .6 328w (in air). In this section we shall describe measurements made

with other values of A . Experimentally, this was accomplished by re-

placing the laser source shown in Figure 4.2 with a low pressure
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mercury arc lamp and using monopass spectral filters to isolate the

various spectr4 lines. A small aperture and coliimator were used to

provide a collimated beam with which to I.luminate the holographic dir-

fraction grating. Using these techniques the ratio of the power dif-

fracted into the N a -i first-order wave to the illumination power

was measured with A (air) equal to .5790ti, .546 011, .4358u and

.4046, for the grating used in Sections 4.5.1 and 4.5.2 (d w 1.223u,

y *O).

The experimental results are shown in Figure 4.Ta, where we

have also plotted the curve for A - .6328P . We observe that the

peaks are shifted to smaller values of 0 o for shorter wavelengths,

as predicted by the analysis of Section 4.2. Computer generated curves

shc:wed that the peaks occurred at 0 o = 150, 13.90, 130, 10.40 and

9.70 for A - .6 328u, .5790u, .5460 , .4358u and .4046m, respectively.

Observation of the experimental curves shown in Vigure 4.a shows that

the location of the peaks are within 1/2 degree of the predicted values.

We also obberve that there is a difference in efficiency for

the different wavelengths, the efficiency being greatest at x a .6 328 u.

Furtherore, there is a broadening of the curves with shorter wave-

lengths. This broadening is not predicted by the theory if one assumes

that the index of refraction is the same for all wavelengths. However,

it can be accounted for by using larger values of the index of refrac-

tion in the computations. This is illustrated in Figure 4 .Tb, where

we have plotted the experimental curve for A a .4 46wnd theoretical

curves computed using na 1.5, 2.0 and 2.5. No shift of the peak
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occurs vheu we vary n when the fringe planes art perpendicular to the

emulsion surface (Y u 0). We see from Figure 4,7b that an index of re-

fraction of the order of 2,0 provides a reasonable fit, which auggsta

th possibility that the film e-muislo layer may be* qu.U4 4imiut1Ve.

We shall merely note this possibility here und shall not consider this

point further, as it is outside the scope of our treatment of the

problem.

4.5.5 Orientation Sensitivity - Grating Lines in the Plane of Incid-nce

In the previous sections, we have restricted our experiments

and numerical computations to the case where the propagation vector of

the illumination beam had no component in the direction of the grating

lines (i.e.. tio 0 0), in order that all the propagation vectors would

lie in the same plane. The analysis developed in Section 4.2, however,

is not limited to this case, and in order to verify the general

validity of the analysis an experiment was performed where the wave

vector had components in the direction of the grating lines.

What was done was to rotate the grating by 900 about the z

axis from its normal position on the rotatable table shown in Figure

4.2, which results in the grating lines being parallel to the horizontal

plane. Rotating the rotatable table then results in &io being varied,

with mio being equal to zero. With this change, the wave vectors of

the illumination wave and diffracted waves no longer lie in the same

plane, and it was necessary to modify the experimental apparatus so that

the photomultiplier could be positioned to pick up the diffracted waves.
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What wan done was to add another degree of rotational freedom to the

photomultiplier holder, so that in addition to a rotation about the

vertical axiz, rotation cotild be Lohlieved about a horizontal als

which pasa through the illuainated portion of the grating.

The experiaental results are shovn in figure 4.8 for the

same grating that vas used in Section 4.l (y - 0, d a 1.223u)

The ratio of the power diffracted into the N a + 1 first-order wave

to the power in the illumination beam is plotted against , which

is defined by

L - sin (4.88)

Also plotted is the theoretical curve, for three different emulsion

thicknesses. The agreement is best for T a 11U. The point * a 0

corresponds to the point 0 0 in figure 4.3 (emulsion side fore-

ward), and the observed difference in p,/pi is due to the fact that

different portions of the grating were illuminated in the two cases.

This was due to the design of the holder, and could not be avoided

without cutting the film plate, which was not done.

We observe from figure 4.8 that the variation of pI/pi

with # is much smoother then with eio I and that the central peak

and secondary maxima are absent. Our numerical calculations show

that this same general behavior is to be expected for other gratings

having different parameters, but that the general shape of the curve

will vary considerably, and in some cames will be a minimum at # a 0

(this has been observed).
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4.5.6 Efficiency

We have seen in the previous sections that for a given rat-

ing, source, and diffracted order, there is a particular direction of

the illumination wave for which the diffracted power is a maximum.

This "optimum" direction of illumination, or "optimum illumi-Atxon

condition," is the same for similar gratings (same d, y, T) , but

one finds that the diffracted power that is obtained under such

conditions is not necessarily a constant, but may vary from one grat-

ing to the next, depending on the exposu-e and processing procedures

used in producing the various gratings.

It is of interest to examine the effect of varying the

exposure and processing procedures on the efficiencies of the dif-

ferent gratings. This was done experimentally, using gratings similar

to the one discussed in Sections 4.5.1, 4.5.2, 4.5.4, and 4.5.5

(d - 1.22, y * 0). What was done was to make a number of such grat-

in4 'here the exposure time was varied to provide a range of ex-

posure. The efficiency of each grating (i.e., pl/Pi for optimum

illumination conditions) was then measured and plctted against the

attenuation suffered by the zeroth-order beam (p /P at 0 - 0)
0 i io

and the results are shown in figure 4.9. Recalling that we estimate

the attenuation constant a by

-- 1 Ln (-) (4.89)
2T PO

We can view figure 4.9 as being equivalent to a plot of efficiency

j
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vs a (where pi is I e :wer in the illumination beam, P0

is the power in the transmitted portion of the illumination beam, at

normal incidence, sad T Is tht emulsion thicknes).

The lower -urve in figure 4.9 corresponds to the case where

the film plates are processed in tae normal manner, as outlined in

the beginning part of Lection 4.2. This curve can be interpreted in

a qualitative way with the aid of equation 1.9, the grain density

equation. There appean to be two competing processes that occur as

we increase the expovare. First of all, we increase the number of

grains which contribute to the first-order diffracted waves which

increasesthe power diffracted into the first-order waves. At the sam

time, however, we increase the total number of grains present which

increases the attonuation of the emulsion layer. Initially, the first

factor dominates and the efficiency increases rapidly with increasing

exposure. -The film response -slowly begins to saturate and the co-

efficients of the other terms in equation 1.9 begin increasing faster

then the term contributing to the first order diffracted wave. The

efficiency then begins to level off and finally begins to decrease,

and when the film response has become completely saturated, a further

increase in exposure results only in a correspunding increase in

attenuation, as evidenced by the straight line portion of the curve.

This description is supported by the upper curves shown

in figure 4.9, which corresponds to the case where the gratings are

bleached (using Kodak Chromium Intensifier). Here the attenuation

has been removed and the saturation of the rilm is clearly evident.
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It is interesting to note that the efficiencies of the

bleached gratings are about a factor of two greater when the euAlsion

layer is &.til. wet, following the bleaching process. This appears to

be due to the chemistry of the bleaching process, rather than to the

increased thickness of the emulsion layer due to swelling, as resoaking

of the emulsion layer after it had dried did not result in an increase

in efficiency. In addition, it was observed that bleaching of the

very highly exposed plates resulted in rather severe light scattering,

but that scattering was not a problem for the more lightly exposed

plates.

The gratings used to generate the curves shown in Figure 4.9

were made using approximately equal power in the two original exposing

",iaves. Gratings were made using unequal power in the two waves and

they were found to be less efficient, as is expected.

4 .6 Discussion

In this chapter we have extended the analysis of Chapter One

to include the computation of the amplitudes of the first-order dif-

fracted waves that are produced by the grains associated with a

particular periodicity term in equation 1.9. The analysis was then

applied to the case where the hologram was a holographic diffraction

grating, for which a series of experiments were carried out, and the

experimental and analytical results were found to be in good agreement.

m m m m m m m m m m m m m m m m m



We found that there are two optimum directions of illumination

that maximize the power diffracted into the first-order wave#, one

direction being associated with each of these waves. These directions

were found to be (apart from relatively small shifts that were observed

experimentally) the directions of the two original exposing plane

waves that were used to generate the grating. That is, if one

illuminates the grating with one of the two original exposing plane

waves, then the amplitude of the first-order diffracted wave, which

corresponds to a reconstruction of the other original exposing wave,

is a maximum.

It was seen that the sensitivity of the diffracted power to

the direction of the illumination wave increases with increasing

emulsion thickness and decreasing periodicity d , with the result

that for a "thick" grating (d/T < .2) the amplitude of the first-

order diffracted wave corresponding to the reconstruction of the

original exposing wave will be much greater than that of the other

first-order wave.

It is thus clear that for the case of a more general

hologram, the best reconstruction of the original signal beam will be

obtained when the illumination beam is the same as the reference beam.

If the hologram is "thick," then the power diffracted into the

reconstruction of the signal beam (i.e., the virtual image) will be

much greater than that diffracted into the real image beam, when the

illumination is done with the reference beam.
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CHAPTER FIVE

DUPLICATION OF HOLOGRAMS

5.1 Introduction

The idea of duplicating holograms has been a subject of con-

siderable interest for a number .f reasons. First of all, if one has

a "master hologram," then oftentimes one can produce copies of com-

parable quality without the need for the more elaborate apparatus re-

quired to make the original hologram. Holograms have been success-

fully duplicated in a number of laboratories (45), and indeed, it ap-

pears that at least part of the interest in the duplication of holograms

arises from the fact that a certain amount of experimental research can

be done in this area without the need for the somewhat specialized ap-

paratus required for making holograms. This was the case here, where

the initial experimenta.. work in the field of holography (-March 1965)

consisted of duplicating a borrowed hologram using both a helium-

neon laser and conventional light sources of different spectral width.

More recently, during the sumer of 1966, a more compre-

hensive study of the duplication process was made, with particular

emphasis being placed on the case where the hologram must be regarded

as "thick," in the sense that the periods of the fringe patterns are

small compared to the emulsion thickness. It was determined, frcm a

careful study of the duplication of a very simple type of hologram,

the holographic diffraction grating, whose properties were reported in

a previous publication (9), that the duplication process should be
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viewed as that of making a hologram of a hologram. Described in

th.'ese termt. the varioua. tipecte of copying honeramm can be treated

* in a straightforwam~ and consistent manner.

Various "ipects of the idea of making a hologram of a hologram

have beeni con~sidered by other researchae. F. B. Rotz and A. A.

Friemem (4i7) demonstrated the interesting result that if one takes a

hologram of the real image of a hologram, then the real image of the

new hologram doesn't exhibit any of the paeudoscopic effects normally

associated with the real image. In the experimental arrangement used

by Rotz and Friesew, the film plate for the second hologram was located

sufficiently far from the original hologram so that it was illuminated

only by the real image field. The reference beam was provided in the

normal manner. D. B. Bru~mm, in a recent publication (4.8), developed

this idea further, and pointed out that one could effectively duplicate

h-olog ram in this manner, and that it was not necessary to separate the

two film plates, as the zeroth-order beam can provide the reference

beam, and either the real or virtual image beams can provide the signal

beam.

5.2 Duplication of "Thick" 1iranamission Holograms

In this section we shall consider the duplication of tren&-

mission holograms 'where the spatial frequencies of the recorded inter-

ference patterns are sufficiently high such tha periods of these

patterns are small compared to the emulsion thickness. In ouch a case,

as was discussed in Section 2.2.2, the variation of the grain density
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with the depth must be accounted for, and the conept of aver~ge aispli-

tudc transinission becomes of question~able use. We shall consider the

* case of duplication of low spatial frequency holograms briefly in

Section 5.6, where we shall treat them as a limiting case of the case

considered here.

5.2.1 Dul;>ication Process

The basic duplication process can be described in somewhat

general terms as that of exposing a film plate to the field produced

by illuminating a hologram in some manner. We would normally think of

the film plate as being in close proximity to the hologram, but this

need not always be the case. It is clear that the nature of the dupli-

cate hologram will depend primarily on the nature of the field that

exposes it. This, in turn, depends on the nature of the field used t,

illuminate the master hologram, the characteristics of the master holo-

gram, and the location of the duplicate hologram film plate with re-

spect to the master hologram. It Is thus apparent that what is in-

volved in a detailed description of the duplication process is the

solution of the general problem of specifying the diffracted fields

produced when a hologram is illuminated by some arbitrary field. Cer-

.ain aspects of this problem were conaidered in the previous four

chapters, and we shall apply the analyses, result^, and conclusions

contained therein to the solution of the problem at hand. In particular,

we shall ma~te frequent use of the material contained in Chapter Four,

and will develop our treatment along the lines of the analysis con-

I
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tained in Chapter One.

2.2.2 Production of an Exact Com,

It is clear that the duplicate hologram will be wi exact copy

of the original only if the expoiin ffl4ds nre identical t-.? those used

to produce the original hologram. This can, to a large extent, be

chieved provided that the original reference beam was a single wave,

preferably a plane wave (this requirement must be satisfied if the vir-

tual image is to be an accurate reconstruction of the signal beam, as

discussed in Chapter Three). Then, as we recall from Chapters One and

Two, illumination of the master hologram plate with the reference beam

will yield a reconstruction of the signal beam. This reconstruction of

the signal beam, plus the transmitted portion of the illumination or

reference beam, are then essentially the same as the original exposing

fields.

There are, however, additional fields produced which corres-

pond to the real image, second order images, and other fields as dis-

cussed in Chapter One. There is always a certain amount of background

scattering also, as well as fields due to multiple reflections. All

these additional fields can be neglected provided that their amplitudes

are sufficiently small with respect to the two fields of interest. We

saw in Chapter Four that this is usually the case for "thick" trans-

mission holograms, provided that we illuminate with the reference beam.

As was discussed there, this arises by virtue of the fact that when we

illuminate with the reference beam, the waves scattered by the grains



185

at various depths within the emu.sion loyer that contribute to the vir-

tual i'age add In phase, while those o .tributir to the other images

do not. 'The result is that the amplitudes of the real and higher order

images may be sufficiently small such that they can be neglected.

5.2.3 Effects of V r±yn the Geometrical Characteristics of the

Illumination Wave

In the previous section we considered the case where the

master hologram plate was illuminated with the reference beam, assumed

to be a laser generated plane or spherical wave, of the same wavelength

A as that used to produce the master hologram plate. In this section

we shall deal with the case where the illumination wave is still a

laser generated plane or spherical wave of wavelength A, but inci-

dent at a different angle of incidence or having a different radius

of curvature, or both.

We shall find it convenient to deal with the problem using the

description of the holographic process developed in Chapter One. This

allows us to determine the effect of varying the geometrical charac-

teristics of the illumination wave on the total field by a careful

examination of the effects of changing the angle of incidence of a

plane wave on a holographic diffraction grating, since we can consider

the hologram to be composed of a "linear" sum of such gratings, as

discussed in Chapter One. Looking at the problem from this point of

view, we need consiier only the case where the illumination wave is a

plane wave, as at any given point we consider a spherical wave to be
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approximated by a plane wave. We should bear in mind, however, that

while a change in tht direction of a plane wave illumination beam

brilug about the same change in angie of incidence or the illumination

wave at all points on the film plate, this will not be the dase for a

spherical wave illumination bp@ex

It ia clear that changing the angle of incidence of a plane

wave used to illuminate a holographic diffraction grating will change

the amplitudes and directions of the various diffracted waves, It is

shown in Section 5.3, where the duplication of holographic diffraction

gratings is considered in detail, that in general only the two. first-

order diffracted waves and the transmitted portion of the illumination

wave need be considered. Furthermore, it is shown in Section 5.3.1

that although the directions of the first-order diffracted waves are

changed by varying the angle of incidence of the Illumination wave,

the periodicity of the interference pattern generated by either of

the two first-order diffracted waves and the transmitted portion of the

illumination wave is a constant in any plane parallel to the plane of

the master film plate. This constant is independent of the angle of

incidence of the illumination wave and its wavelength, and is equal

to the periodicity of the master holographic diffraction grating in

the plane of the emulsion surface. This means that the periodicity in

the plane of the emulsion surface of the duplicate hologram will be

the same as that of the original (provided the duplicate film plate is

placed in a plane parallel to that of the original during the dupli-

cation process). Since this is the per. licity that determines the
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directions of the diffracted waves which are produced when the duili-

Cate. hol!"grtm *S !I___ td tbi MVana that y4#b ramw.ss# trc tna

directions of the dlfrracted waver produced, the duplicate gratings

will be an accurate duplicate of the original.

There resalta, while derived for the apecill caze a"' a hoko-

graphic diffraction grating, can be extended to more general types of

holograms. There is, however, one modification which must be made.

We recall that with the holographic iiffraction grating, illuminated

by a plane wave, there was no need to specify the distance between

the duplicate film plate aind the master film plate. This wp's the case

because the diffracted waves were all plane waves, and hence the inter-

ference pattern is the same in any plane parallel to thr emulsion sur-

face. With the more general type of hologram, however, we may have

spherical waves, nnd while they may be considered as .3ocally" plane,

the interference pattern may vary considerably with the distance from

the master hologram plate. Thus we must add the additional constraint

that the duplicate film plate be in close proximity to the master film

plate, if the periodicity of the duplicate hologram is to be equal to

that of the original.

Thus, if the above mentioned condition is satisfied, then

we would expect, for example, that if we duplicate a pictorial holo-

gram with a laser-generated plane or spherical wave, the reconstruction

of the object produced by the duplicate holograt should look essentially

the same as that produced by the original hologram, regardless of the

geometry of the illumination v4ve used in the duplicatiun process (with-
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it, recizm abl( imritatl.i, - coi-,;c). 7hic va." cberved tn be the Case

by bandry (h), who rcported that either parallel or diverging laser

light produces similar results in the nopying of holograms.

Let us now go back Land consider the effect of varying the

geometrical characteristics of the illumination wave on the amplitudes

of the various diffracted waves. As mentioned earlier, we are inter-

ested in the case where the emulsion layer of the master hologram plate

must be regarded as "thick," and hence, as was seen in Chapter Four,

the amplitudes of the various diffracted waves are highly dependent on

the angle of incidence of the illumination wave. In addition, we re--

call from Chapter Four that the efficiency of a hologram depends on

the ratic. of the amplitudes of the signal and reference beams. For the

case of the simple two-beam holographic diffraction grating, we saw

that the optimum ratic was unity.

In the case where we are duplicating a hologram, we have

e-sentiAlly three--eams to--consider,-the two-first order -beams An4Ahbe

transmitted portion of the illumination beam (the zeroth order). We

can think of each of these first-order beams as interfering with the

zeroth order to yield a separate hologram encoded on the duplicate

hologram film plate. The efficiency of each of these "holograms"

depends on the ratio of the amplitude of the corresponding first-order

beam to that of the zeroth order. In general, the amplitudes of these

first-order beams will be considerably below the value required to

give maximum efficiency, so that the higher the amplitude of either of
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corresponding "hologram."

It m~y appear at first glance that the separation of the

duplicate hologram into two "holograms" is somewhet artificial, since

we have shown that both of these holograms yield identical diffracted

images. A cioser examination of the situation, however, will show

that this separation is quite meaningful when the emulsion layer of

the duplicate hologram film platc must be considered as "thick." In

such a case, the complete spatial dependence of the interference pat-

terns generated by the two first-order beams and the zeroth-order beam

is of importance, rather than just the periodicity in the front surface

plane of the emulsion layer.

It is clear that since the directions of the two first-order

beams are quite different, the two corresponding interference patterns

will also be quite different, even though they have the same periodi-

city in the planeof the emulslon surface. The net resvult is that

when the emulsion layer of the duplicate hologram is "thick," the

amplitudes of the waves diffracted by each of the two holograms encoded

on the duplicate hologram film plate will be highly dependent on the

angle of incidence of the wave used to illuminate the duplicate holo-

gram, and that this dependence will be different for the two holograms.

There will thus be two angles of incidence at which the "Bragg condi-

tion" is satisfied for any given diffracted order produced by the

duplicate hologram, one for each of the two recorded interference

patterns. This is shown experimentally to be the case in Section 5.3.1,
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wherc a careful study was made of the duplication of a holographiP

iffrncti(2i grating.

We recall that the relative amplitudes of the two first-order

beams are highly dependent on the angle of incidence of the beam used

to illuminate the master hologram plate, and hence the efficiencies of

the two holograms which form the duplicate hologram maoy be quite dif-

ferent. In fact, if the amplitude of one of the two first-order dif-

fracted waves is much greater then that of the other, then the effi-

ciency of the corresponding hologram will be sufficiently high com-

pared with that of the other hologram such that only it need be con-

sidered. This is usually the case, as was mentioned in the previous

section, when the master hologram plate is illuminated with its ref-

erence beam.

5.3 Duplication Experiments with HoloAraphic Diffraction Gratmnls

We have seen that the nature of the duplicate hologram depends,

as does any hologram, on the characteristics of the exposing field.

The nature of this exposing field, of course, depends on the nature of

the master film plate and the nature of the field used to illuminate

it. In this section we will consider the case where the master holo-

gram plate is a holographic diffraction grating, and where the dupli-

cation apparatus is as shown in figure 5.1. With this apparatus, we

are able to illuminate the master hologram with a laser-generated plane

wave at various angles of incidence. For reasons of experimental and

computational convenience, we shall deal only with the case where the

propagation vectors of the original exposing plane waves (which
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generated the master hologram), the propaatiu& vectwr crf the illumi-

nating wave, and the normal to the film plate, all lie in the same

plane (the horizontal plane). The grating lines are thus normal to

the horizontal plane, and the y axis of the xyz coordinate system

defined in Section 1.3.3 lies in the horizontal plane. The generalized

grating equations given by equations 1.26 and 1.27 reduce to the ordi-

nary grating equation, which is given by

sin 0 = sin 0 + _ (5.1)

d i d

where (equation 4.60)

0 a sin- (i) (5.2)

m being the y direction cosine of the wave under consideration.

Equation 5.1 can be applied either to the fields inside or outside

the film plate, provided the appropriate value of A is used (this

follows directly from equations 4.42 and 4.44). In this chapter we

shel.J deal primarily with the fields outside the film plate, and we-

shall drop the subscript o on Gi which was used in Chapter Four

to desl6nate 0i prior to rcfraction at the emulsion air interface.

In the experiments that will be described in this section,

the holographic diffraction gratings that are duplicated all have the

same fringe spacing, d a 1.2P3 microns, and all have their fringe

planes perpendicular to the emulsion surface Cy a 0). These gratings

were produced with the apparatus shown in figure 4.1, with the two

plane waves being symmetrically incident at 0 * , 150 . The wave-

length of the two plane waves vas. 6 328w .

I
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5.3.1 VaryIgt h Dtrp,,in f r t!.e lilumr, atioi Wave

.... nc, C-- -C C of the
The efferrt nt vaIng t n- irgl i e of the

plane wave that illuminates the holographic diffraction grating (i. e.

the master hologram) is twofold. First of lii, the directions of the

ilffracte4 waves are a function of i I as speeified by equation 5.1,

&j'd second, the amplitudes of these diffracted waves are strongly

dependent on Oi, as discussed in Chapter Four. The power in each

of the two first-order diffracted waves, for an illumination wavelength

of 0.6238 p , is shown in figure 5.2 as a function of 0. for the1

holographic diffraction gratings under consideration. In figure 5.2

we have used the values for the case where the emulsion side is away

from the beam and the polarization is perpendicular to the plane of

incidence, as this is the configuration used in the duplication of

the gratings. The second-order diffracted waves, whose puwers are of

the order of two orders of magnitude smaller than those of the first-

order waves in the ranve of 0 of interest, are neglected. We will

also neglect waves arising from reflections at the various inter-

faces.

The field which exposes the duplicate film plate thus consists

of three plane waves, corresponding to the transwitted portion of the

illuminating plane wave and the two first-order diffracted waves pro-

duced by the holographic diffraction grating. Recalling that the

holographic diffraction grating was originally produced by two plane

waves incident at 0, 150, it follows that letting 0, - 150

in the duplication process will result in a duplicate hologram that is

I0
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d v 1.223, AND y a 0.



essentIaIly 'he ihre, tas the mruater hologram, the h(- graphic diffrac-

t[onz grating. Thic zan th seen Lo be thr r'ptee *y letting , - 150

in cquation 5.1. Then the trree plane waves that illuminate the dup2i-

cate hologram film plate will consist of the trarsmitted po,tion o!

the 11uination rlane vrnvc, which ir iri4ent tun the duplicate NiM

plate at 150, and the two first-order diffracted waves which are in-

0 0
cident at - 15 and 50.7 , The relative amplitudes of the two first-

order diffracted waves are found from figure 5.2 with 0, a 150,

and it is seen that the N =-- first-order diffracted wave, which is

incident on the duplicate hologram film plate at - 150, iu consid-

erably stronger than the other first order. Thus, except for the con-

siderably weaker beam at 50.70, the field that exposes the duplicate

film plate is essentially the same as that which was used to produce

the original holographic diffraction grating, and hence the duplicate

hologram will. be an accurate reproduction of the master hologram. A

,tumhA r of duplicate gratings were made using the apparatus shown in

figure 5.1 (wihh 0, N 15') and they were observed to be very similar

to the original, as expected. Both the original and duplicate gral!nqs

were made with Kodak 649f film plates, 3 1/4 x 4 1/) x .04O size, and

were processed in the same manner. The basis of comparisor, between

the original and duplicate gratings was taken to be d, the fringe

spacing, as determined by applying equation 1.19, and the fringe plane

orientation, as determined by measuring the amplitudes of the two first-

order diffracted waves as a function of 0 The various duplicate

gratings exhibited differert efficiencies, which depended o; the -ela-



196

tive amplitudes of the two principal exNosing vwVes, as well as the

total expooure. 1thse faotor will be discussed in more detail In the

next ;ection.

Let us now consider the case where the illumination wave has

some angle of incidence other thani 0, a 1 15 , This will mean that

the field that exposes the duplicate film plate will consist of a dif-

ferent set of plan waves than in the previous case. Their directions

and magnitudes are found from equation 5.1 and figure 5.2, respectively.

Let us consider a specific case, for example, 0, a O. This

case is of special interest, as it would be the configuration most

likely to be used by someone who might view the duplication process as

that of making a "contact print." For 0, 0 0 the second-order dif-

fracted waves are quite negligible, and we need only consider the three

waves corresponding to thezroth order ki.e., the transmitted portion

of the illumination wave) and the two firet-order waves. It is seen

from figure 5.2 that these two first-order waves will have equal ampli-

tudes when 0, a 0, but that this amplitude is considerably smaller

than thit of the primaryfftrt-crder wave when 0i  15" (it should

be kept in minC that power, rather than amplitudes, are plotted in

figure . .

The directions of the two diffracted first-order waves axe

found from epuntion 5.1, and are equal to ' 31.1710 . The field

that exposes the duplicate hologram film plate thus consists of a

relatively large amplitude plane wave incident at O0 a 0 (the trans-

mitted illumination wave) and two relativel, small amplitude plane
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w;a es (of equal amplitude) incident at 0. = t 31.1740. The result-1

ing interference pattern, which is what is recorded to form the dupli-

cate hologram, thus consists of the interference patterns of each of

the two first-order waves with the zeroth-order wave and the pattern

.orre~ponding to the interference of the two first-order waves with

each other. Because of the relatively large amplitude of the zeroth-

order wave, the first two or the above mentioned interference patterns

will be the most important, and if the amplitudes of the first-order

waves are sufficiently small compared with that of thezeruth-order wave,

their mutual interference pattern can be neglected. In such a case

the duplicate grating can be considered as the superposition of two

gratings. It is clear that in the special case under consideration

these two gratings have the same periodicity d' in the plane of the

emulsion surface. This periodicity, or fringe spacing, can be computed

using equation 1.19. We find

d' = 1.223 microns (5.3)

which is the same as that of the "master" grating.

The above result is not merely a coincidence for the special

case considered, but is a consequence of a general rule which can be

btatea as follows:

The periodicity of the interference pattern which is generated

by the zeroth-order wave and either of the two first-order waves, in

any plane parallel to the plane of the master grating, is a constant

independent of the illumination angle 0 and the illumination wave-
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length A and this constant is equal to the periodicity d of the

.. ~rgrakting.

This can be demonstrated with the aid of equations 1.19 and

5.1. Writing equation 1.19 in terms of the angles of incidence

il and 012 of the ti o planc wares which gerite the duplicate

grating, the periodicity d' of the duplicate grating cain be expressed

tn the form

d ________A_ (5.4)

1sin 0 ii - sin eid

where A is the wavelength of the illumination plane wave. In the

case under consideration 0 i and 012 are the angles of incidence

oi the transmitted portion of the illumination wave and either one of

the two first-order waves, respectively. The angle E)il is arbitrary

and the axgle 012 is specified by equation 5,1. That is

sin 0i sin 0i 1 X
si 12 -

0 1 (5.5)

where d is the periodicity of the master grating. It is clear that

substitution of equation 5.5 in equaticn 5.4 yields

d' = d (5.6)

which is what we wished to demonstrate.

Returning to the duplicate grating foi..ied with 0, 0,

it is clear that its periodicity in the plane of the emulsion surface

is the same as that of the master grating, and hence as far as the
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directions of the diffracted waves it produces when illuminated, it is

equivalent to the master grating. The basic structure of the duplicate

grating, however, is considerably different from that of the master

grating. Tn the case of the master grating, the fringe planes are

normal to the em lein surface, =nd there is only a single set of them.

The duplicate grating, on the other hand, has two sets of oppositely

inclined fringes, corresponding to the interference patterns of the

two first-order diffracted waves with the miduh-order wave.

These two sets of fringe planes have the same periodicity in

the plane of the emulsion surface, and hence the fields scattered by

the grains associated with either set of fringe planes add in phase in

the same directions. Thus, although there are two distinct sets of

fringe planes, there will only be two first-order diffra.ted waves

produced by the duplicate grating, and as was mentioned earlier, the

directions of these diffracted waves are the same as for the original

master grating.

Tne amplitude of either of the first-order diffracted waves

)roduced by the <duplicate grating is clearly equal to the sum of the

amplitudes of the waves contributed by the two sets of fringe planes.

Because these two sets of fringe planes are inclined in opposite

directions, the relative contributions to the total amplitude of either

of the two first-order diffracted waves varies greatly with the angle

of incidence of the illumination wave. In fact, there are essentially

two distinct ranges of e where either one or the other of the two

sets of fringe planes dominates and the other can be neglected. This
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is verified by the experimental results ahown in Figure 5.3, where the

normalized power diffracted into the N *-I first-order beam is

plotted against e The apparatus used to make these measurements is

shown in Figure 4.2, and a discussion of the experimental details for

this case would be essentially the same as that given in Chapter Four,

and hence will be omitted.

The curve plotted in Figure 5.3 is ,een to consist of two

similar curves, one centered at 0 = 10 and the other centered at

0, a 34-50 , with a transition region in between. The curve centered

at 0i Z 10 is essentially due only to the fields scattered by the

grains in the fringe planes associated with the original exposing waves

at 9. = 00 and 0, = -31.1740 . Similarly, the curve centered at

0, W 34.5 ° is essentially due only to the fields scattered by the grains

in the other set of fringe planes, which are associated with the original

- exposig--waves--at e and --o j-= T4 0-- We-observe -that-the -maxima _ _

are shifted slightly from the values (00 and 31.20) of 01 that we

would expect on the basis fif Bragg reflection from the inclined fringe

planes. A similar shift wab observed and discussed in Chapter Four, in

the section dealing with holographic diffraction gratings with inclined

fringes (Section 4.5.3).

5.3.2 Efficiency

It is often of interest to compare different holograms on the

basis of how "bright" a reconstruction can be obtained, with a given
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illumination power. While a meaningful corparison may be difficult

between two entirely different holograms, such is not the case when we

have duplicates of the sa.iwe mater hologram. In the special case of

the holographic diffraction grating, c-mprisoon of thif nature are

particularly straightforward, as was seen in Chapter Four. A conven-

ient basis of -omparison is the efficiency, which we define as the

ratio of the power diffracted into the primary first-order beam to the

power in the illumination beam, when the "optimum" illumination angle

Ei is used. For example, consider the grating corresponding to fig-

ure 5.3. It has wi efficiency given by

Ed a 1.5 x 
10- 3

while the efficiency of the master hologram plate from which this grat-

ing was duplicated is seen f'om figure 5.2 to be

E a3 xO0-2

We observe that in this case the efficiency of the duplicate grating

is much lower than that of the original. This is not always the case,

however, as it is quite possible to have the efficiency of a duplicate

gratirg exceed that of the original. Furthermore, the original grat-

ing which yields duplicate gratings of the highest efficiencies is not

necessarily the one with the highest efficiency itself.

These statements follow directly from the results of Section

4.5.6 of the previous chapter, where we saw that the efficiency of a

two-beam holographic diffraction grating depends primarily on the ratio
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of the amplitudes of the two beam and on the total exposure. For a

given amplitude ratio, there is some optimum exposure that viii yield

maximum efficiency. ITe maximum efficiency is greatest for an ampli-

tude ratio of unity, and becomes less and less as the ratio departs

farther and farther from unity.

Let us return to the case where we wish to duplicate a holo-

graphic diffractioi, grating of the type described in the previous sec-

tion (i.e. d a 1.22 3m, fringe planes normal to the emulsion surface).

The variation of the power in the zeroth-order beam and in the two

first-order beams with (3 as shown in figure 5.2 for a particular grat-

ing of this type is typical, with differences between different grat-

ings amounting to displacements of the zeroth-and first-order curves

in thc vertical direction.

In all cases (except possibly for bleached gratings) the

amplitude ratio is closest to unity when e, U 1 150, and thus the il-

lumination angle which gives the most accurate duplicate _gratings also

gives the most efficient duplicate gratings.

5.4 Duplication with a Non-laser Source

The first duplication of holograms was done by Gabor (5),

using "conventional" or "non-laser" light sources. Indeed, the forma-

tion of a "positive" (or duplicate hologram from our point of view

was an important part of the holographic process as described by Gabor.

Since the holograms which Gabor was dealing with involved fairly low

spatial frequencies, the duplication process consisted of essentially

making a "contact print" of the original hologram. Later, with the

i
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invention of the laser, it became practical to make holograms having

much higher spatial frequencies, an these, too, have been duplicated

using conventional light sources in what appears to be a contact print

type of process (45, 46). It was observed (45, 46), however, that it

was quite important to have close contact between the master hologram

iuit " auri .-a fi Im l-te ntherwise no reconstruciion can be ob-

tained from the duplicate hologram which is produced. This and other

effects are easily explained in terms of the description of the dupli-

cation process as that of producing a hologram of a hologram, rather

than as the formation of a contact print.

5.4.1 Coherence Length and Path Length Differencs

In the previous sections we assumed that the illumination of

the master hologram plate was done with a laser generated plane or

spherical wave. Ti-us thout~ he duptieation- -rocos.ha-ben-__

shown to involve the recording of the interference patterns generated

by the two first-order beams and the zeroth-order beam, it was not

necessary to take into account path length differez.ces, as the co-

herence length of the illumination field could be c.)nsidered as quite

long. We shall now consider the case where we have a point source

which has some finite, perhaps large, spectral width, and hence may

have a very short coherence length. In such a case, if the path length

differences exceed the cohererce length of thr source, then there will

be no interference pattern, and hence no duplicate hologram produced.

There is, if course, no specific path length difference at
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which point the interference pattern abruptly disappears, but rather,

,s d cuaacd by -r ar. .... lf 16k the disappearance is gradual. Ie

roherence length L is defined in 4uch a way as to give a measure of
C

the path length difference for which the interference pattern is er--n

tially gone, a6 evfa-nc by a very low value of the visibility of the

interference fringes, and is given by

C

where 6AO and To are the spectral width and the mean wavelength of

the source, in a vacuum, In comparing path length differences with Lev

we must use the optical path length rather than the geometrical pAth

length.

In general, there will be a range of path length differences

associated with a hologram of a fairly complex nature, and these path

length differences will depend on a number of factors, which, t: a

certain extent, are under our control. In examining this problem, it

is convenient to use the approach developed in Chapter One, as the path

length differences associates with each periodicity of the master holo-

gram plate can be computed separately, in a straightforward manner.

This allows us to consider the effect of varying certain parameter... n

the duplication process independently of the details of any particular

hologram.

Thus, le. us consider the case where we wish to duplicate a

holoiraphic diffraction grating, of periodicity d, using a point

source whose mean wavelength is To. We shall assume, for computa-

i£
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tional convenience, that the grating is illuminated with a collimated

beam, and that the projection of the propagation vector or the Illu-

mination beo on the emulsion surface plane is perpendicular to the

interference fringes, In this case, the propagatlon vectors of the

d1iffr ctt4 vavra Lie in the same rdane as that ,-f t", 1lf iiiii(v

wave, and their directions are specified by the simple grating equa-

tion

sin v d a ain +i N! -- Q (5.8)
d

In writing the above equation, we have assumed that Ao is suffi-

ciently small such that we can neglect the angular dispersion which

it produces. If this is not the case, then we must take into account

the range of A and apply the grating equation separately for each

wavelength.

The interference patterns which are of interest are the two

which are generated by the interference of the firbt-order waves vith

the zeroth order. It the coherence length of the source is relatively

short, then these two interference patterns will be localizeA in the

immediate vicinity of the emulsion layer of the master hologram plate,

the holographic diffraction grating. Thus, If one is to be able to

record these interference patterns, and thus obtain a duplicate holo-

gram, then the emulsion layer of the duplicate film plate must be

placed within the region where the interference patterns exist. In

practi:e, this is usually accomplished by placing the two emulsion

layers in contact, and illuminating the master hologram plate from the
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back side. It is riot possible, however, to reduce the path length

differences to z-ro, as the emulsions tunmselves have a finite thick-

ness. Furthermore, it may not be possihle to reduce the separfation

distanee to zero, especially if an index matching fluid is placed be-

tween the tva emulsion l'yers.

The optical path letngth difference arising from a amparation

of the two emulsion layers by an amount 6, neglecting emulsion thick-

nesses, is shown in Appendix VII to be given by

L a n6 [(tan 0' - tan 0) sin 0' + -0(5.9)I d01 0I CosU 0 1

where n is the index of refraction of the medium between the emulsion

layers and 1' and 01 are related to 0i and 0d by Snell's law:I d d

Jsln - sin (5.10)n

and

sin ' 1 (5.11)
d ni d

The values of 0d which are of interest, correspond to V u '1 in

equation 5.8, and are specified once the &ngle or incidence 0i of the

illumination wave is specified.

We observe that the path length differetnce, while being pro-

portional to 6, is also a function of ne, es 021 n n, and d. The de-

pendence of 6L on these quantities was investigated numerically and

some typical results are shown in figure 5.4 (for N * -1, n * 1.0).

h
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The correspondiNg curves for N - .1 are found by replacain ti, by

, We observe that for a given film emulsion separation diatance

6 higher spatial frequencies (smaller d) and longer wavelengths

yield larger values of AL. In addition, if d is small (of the order of

t then aa, i2 mtrngy dependent on or It is - st fr-- ft;ue 1,;.

that (for N a -I) t increases very rapidly as 9 approaches some

minimuz value, which is a function of To /d. This minimum value of

3 corresponds to the smallest value of () from which a solution fori i

0 exists (equation 5.8 with N * -1), and thus it the solution of

sin *Ao-l (0i 02)
d

Similarly, for N * +1 there will be a maximum allowable value of i

which is specified by

sin 9 +l (5.13)7 +

We observe that if d< o then there will be no value of 0i

for which both first-order diffracted waves exist, and neither first

order will exist for 0) a 0. Thus, if the illumination wave isi

brought in at normal incidence (which is the Atandard procedure for

making a "contact print"), then it will be possible to obtain a

duplicate hologram only if d> c. This is independent of the co-

herence length of the source.

On the other hand, if d is large compared with Xo then,
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for 1.0,

210

and we sa that the path length diferences involved with either firet

order decrease very rapidly with increasirg d. It is thus clear why

hol>grar.s involving low snatial frequencies (less than 200 lines/mm)

are relatively easy to duplicate uring what appears to be a "contact

print" process, as rep-)rted by Vandevarker and Snow (49).

5.4.2 Farly Fbperiments

As mentioned in sectio7n 5.1, the initicl experimental work in

the fiell of holography which was done here consisted of duplicating a

borrowed hologram,* the subject of the hologram being a model train.

The apparatus which was used is shown in figure 5.5, an- consisted of

a source, a collimating lens system, and a photocopy frame which was

sed to hold the two fi lr p1ates in close-contact. The--l1lumination-- -

beam was inciuent t 0 = 0 in all cases, and no special vibration

elimination techniques uere used.

Both the waster hologram and the duplicate film plates were

Kodak type 649f film plates, 4" x 5" x .040 size. The master holo-

gram 4us apparently made without the use of spatial filtering in the

reference oeam, as it exhibited the characteristic rings and swirls

of diffraction patterns caused by dust on the elements of a coherently

* The ho!igrar was borrowed from Ivan Courtwright of Spectra Physics
Corporation, and the experimental work w&r done with the assistance
of Milton Chkng.
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illuminated optical system. This was, in fact, somewhat of an advan-

tage, because these large fluctuations in the transmission of the

master hologram made the duplication process less sensitive to the

total exposure.

A number of different sources were used, the first being a

helium-neon laser operated at 6328A°. A number of duplicate holo-

grams of a quality comparable to that of the master hologram were

obtained with the source, both with the emulsions in contact and

with the duplicate film plate turned around (which provided a spacing

of .040" between the two emulsions).

The other sources consisted of a high pressure mercury arc

lamp (PEK LABS MODEL 701) used with a variety of filters, as noted

below:

(a) Spectrolab No. 2412 (MA° wide at 6843A° )

(b) Spectrolab No. 1709 (lOOA0 wide at 6328A° )

-c--) Corning -63-and- 1-69 (tbandpaas -5900AO-t 9OOOA9 -) _ ___

The coherence lengths of (a) and (b) are found from equation 5.7 and

are equal to 670 microns and 40 microns, respectively. To compute the

coherence length of source number (c) we must take into account the

fact that the 649f type emulsion is only sensitive out to a wavelength

of about 7000A° , which would make AA in this case equal to 1100A°,

and hence I a 41 for source (c).
c

All three of the above sources yielded duplicate holograms

of a quality comparable with that of the original hologram when the
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emulsion layers of the master hologram and duplicate hologram were

placed in contact (and held there by the spring loaded photocopy

frarn--, It is thus evident that there is little difficulty in reducing

the separation distance between the two emulsion layers to a value suf-

ficlently smll such that the duplicaticn can be done with conventional

sources.

5.5 DRUlication of Reflection Holograms

In this section we will consider the case where one wishes to

duplicate a reflection hologram. It is clear, from the analysis %nd

discussion of reflection holograms in Chapter One, that it would be

completely meaningless to talk about making a "contact print" of such

a hologram. However, if one views the duplication process as that of

"making a hologram of a hologram," it is quite straightforward to

demonstrate that a duplicate reflection hologram can indeed be pro-

duced. What is required, as is the case with transmission holograms,

is to illuminate the duplicate film plate with essentially the same

field as was used to produce the master hologram. This can be done by

illuminating the master hologram plate so that it yields a reconstruc-

tion of the original signal beam, and then placing the emulsion layer of

the duplicate film plate in the region where the interference pattern

generated by the illumination wave and the reconstructed signal beam

exists.

In the case where we are duplicating a transmission hologram,

this region exists on the side of the master film opposite that which

I
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is first illuminated by the illumination beam, and hence the duplicate

film plate is placed 'behind" the master hologram plate, as if making

a contact print. With a reflection hologram, however, this region

exists in front of the master hologram plate, and hence we must place

the duplicate fila plate between the master hologram plate and the

illumination beam, as shown in figure 5.6b. The illumination wave

thus passes through the emulsion layer of the duplicate film plate

first, prior to striking the master hologram plate. The transmitted

portion of the illumination wave then ilJuminates the master hologram

plate, producing a reconstruction of the signal beam in reflection,

which then illuminates the duplicate film plate. An examination of the

situation shows that if the illumination wave is essentially the same

as the original reference beam, and if it produces a reconstruction of

the original signal beam, then the field which exposes the duplicate

__filmplat is essentIalny tbe same sithat-which -produce -the-maater

hologram, and hence a duplicate 'ologrm will be obtained.

5.5.1 Source Reauirements

We recall from the discussion of reflection holograms given

in Chapter One that there are a number of fundamental differences be-

tween reflection holograms and transmission holograms and these dif-

ferences will be reflected in the duplication process. We recall that

for a transmission hologram, a change in the wavelength of the illumi-

nation wave doesn't preclude the production of a duplicate hologram,

as a reconstruction can usually be obtained over a wide range of
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wavelengths with a transmission hologram, With the reflection holo-

gram, however, there is only a narrow band of wavelengths for which a

reconstruction of thc signal beam can be obtained. This means that the

illumination wave used in the duplication process must have a wavelength

within this same band.

5.5.2 Emulsion Shrinkage Effects

In the absence of any shrinkage of the emulsion layer during the

processing of the master hologram film plate, the center wavelength of

the reflection band of the master hologram will be at about the same

wavelength as that of the original exposing field. If there is emul-

sion shrinkage, then the reflection band will be shifted toward shorter

wavelengths. Fleisher et al (27), in an article dealing with an opti-

cally accessed memory using the Lippmann process, have reported record-

ing standing wave interference patterns using Kodak 649-f film plates

in which emulsion shrinkage shifted the reflection band from 5461A to

4450A° . Upatnieks et al (24), who also used Kodak 649-f film plates,

report similar large shifts in the reflection band of reflection bolo-

gram, stating that a reflection hologram made with red light requires

green light for the reconstruction. They also note, however, that

emulsion shrinkage can be reduced considerably by eliminating the fix-

ing step of the development process.

It is apparent that emulsion shrinkage may prevent the use of

the same laser source in the duplication process as was used to produce

the original reflection hologram, as while the reflection band may be
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of the order of 50A0 wide (27), shifts of 1O00A ° may occur. If we are

forced to use a laser souce of Q different wavelength in the duplief-

tion process (assuming that one exists with the approximate A ), then

it is clear that the flelds which expose the duplicate film plate will

not be the same as those that exposed the original master hologram

plate. Thus the duplicate hologram will differ from that of the origi-

nal. The most striking difference will be that the duplicate hologram

will have a different reflection band, being shifted again towards

shorter wavelengths due to emulsion shrinkage in the processing of the

duplicate film plate.

5.5.3 Use of Non-Laser Sources

It may well be that in some cases no suitable laser source will

exist for the duplication process, or more likely, that none will be

available. If uich is the case, then a conventional source would have

- to be used, and-one-woud-need -to--conai4dr- ce.ee-engtnmAn ndp-th

length differences. A discussion of these factors for the case of the

reflection hologram would be quite similar to that given !4 ?ection 5.4

for transmission holograms, and would add little new insight into the

problem, and hence will not be considered here. We should perhaps

note, however, that with reflection hologram& we may be dealing with

very thick emulsions and hence the path length differences associated

with the path lengths within the master hologram pl&te should be given

more attention than they were in section 5.4.

If a conventional source is to be used in the duplication

• • m | | | || | |
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process, the question may well be raised s to whether or tct the wave-

LeiIth seiectyvity ,tf the reriection hologram itself can be used tv take

the place of a narrow band light source. The basic idea of such a

scheme would be that since the reflectlon hologram reflects only in a

narrow portion of the spectrum, the reflected light would be narrow

band, regardless of the spectral width of the illumination wave. The

reflected wave could thus interfere with that portion of the illumina-

tion wave that lies with the band of reflected wavelengths. There is

one obvious ot.jection to this scheme and that is that all of the illumi-

nation wave passes through the duplicate fi2m rlate prior to reaching

the reflection hologram, and hence those wavelengths not of interest

would produce an undesirable level of backgrouid exposure. It may be,

however, that if this background level is not too high, bleaching of the

emulsion layer as described in Chapter Four may effectively remove it.

5.5.4. Efficiency

We shall limit our discussion of efficiency of duplicate re-

flection holograms to a brief discussion of the implications of having

the illumination beam pass through the duplicate hologram film plate

first, prior to striking the master reflection hologram. We observe

that if the master hologram has a very low efficiency then the power in

the "reference beam" will be much greater than the power in the "signal

beam" which exposes the duplicate film plate. This should result in a

very inefficient duplicate hologram.. The situation is quite different

when we duplicate an inefficient transmission hologram, when the in-
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efficiency iu due to overexposure, as although the power in the recon-

S!rU~ted iMftca a -o du to the rattflati-cnr Ly the Higb back-

ground grain density, the "reference bean" is likeviso attenMated, uiAr

thus a favorable power ratio may still b~e obtaine .

* .5.6 Discussion

In this chapter we have described the duplication process from

the point of view of making a hologram of a hologram, rm.aher than in

terms of making a "contact print," Described in these terms, it be-

comes clear that the production of a duplicate hologram involves the

recording of irnterforence patterns, just as is the case when one pro-

duces a hologram by conventional means. In the case where the master

hologram is a tranesmission hologram, there are essentially two such

interference patterns that need be considered, namely those generated

by each of the two firot-order 'images" and the transmitted portion o"

the illim.nation wave, On the other hand, there is only one su,,h i. ter.-

ference pattern that is recorded when we duplicate a reflection holo-

gram, as a reflection hologram only yields one "irae" when III -

illuminated.

We have seen that the nature of the duplicate holog depends

primarily on the nature of the interference pattern (or pfltterns) that

are produced when the master hologram is illuminated. In the case

where the master hologram iz a "thick" transission hologjLUM, the nature

of the two interference patterns are highly dependent ori th(r georet' cail

characteristics of the illumination wave. A careful study was ide of'
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tte effectc of varying the angle of incidence of the iliumination wave

........ vaz a ho.&1r &ti vu drating. From

thit study we arc able to conclude that varying the geometrical charac-

teristics or the illumination wave will not affect the form of the re-

conatructed imoai produced by tht duplicate grating, but will affect

the overall efficiency of the duplAcate hologram. Furthermore, if the

emuision layer of the duplicate hologram is itself "thick," then the

way in which the brightness of the images reconstructed by the dupli-

cat#- hologrkm vary with the geometrical characteristics of the illumina-

tion beo., will be strongly dependent on the gecetrioal characteristics

of the illumination wave used in the duplication process. We recall

from Chapter Four that in general the most efficient reconstruction

of the signal beam is produced when the reference beam is used to illu-

minate the hologram. The same principle applies in the case of the

duplicate hologram, only now the reference beam referred to is the

illuminution wave that was used in the duplication process. The effect

of using a non-laver source was also considered, and it results in a

localiztion of the interference patterns in those regions where the

path length differenee- ure less than the coherence length of the

source.

Transmisaion holograms involving low spatial. frequencies can

also be treated from the point of view developed in this chapter, al-

though moot of the interesting effects predicted by this approach be-

come negligible i the limit of very low spatial frequencies. For
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example, we observe that as the spatial frequencies diminish to Ivw

valuem, thiersitivit- tc the~ a.-otcal chaxacteriatica &ridCo

herence length decrease a&cvrdingly (the path length difkierenres de-

ereases as f for low spatial frequencies). As the spatial frequen-

ciea decre&;c to the point where the varietine with depth are unimpor-

t&nt, the duplication process is quite adequately described in termz of

the transmittance approach described in Chapter Two. In such a case,

the duplication process can be viewed as that of making a "cnmtact

print." It is clear, however, that this will never be the case with a

reflection hologram, as in this case it is the variations with depth

that produce the hologram.

We observe that the mechanical stability required in a holo-

gram duplication apparatus such as shown in Figure 5.1 is far less

than what would be required in a conventional hologram apparatus, such

ag 3hO vn in Figure 4.I. The basic requirement for mechanical stability

in either case arises from the requirement that the interference pat-

tern that is being recorded remain fixed with respect to the recording

media during the duration of the exposure. In the case where we are

duplicating a hologram, the interference pattern is fixed with respect

to the master hologram plate, and hence all we need do is to be sure

that the duplicate film plate remains fixed with respect to the naster

hologram plate. Furthermore, the allowable relative motion of the two

film plates can be fairly large if the spatial frequencies in the mas-

ter hologram are low. The situation is quite different when we are

recording a "master" hologram. In this .:ase, the interference pattern
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and filig plate are fixed wit respect to a third itet th- table on

which the apparatus is mounted. The %enqti-ty tro motion of cho film

plate is similar to that of tte duplication process, being p-portional

to the spatial frequencies being recorded. On the other hand, changes

in the Idth lengths involved in the interference pattern o n £he order

of X/2 will completely wash out the recording of the interference

pattern, irrespective of the spatial frequencies involved. Such cianges

could be produced by motions of the reflecting elements in the optical

system occurring after the bear is d'vided intc two portionb.

In addition to the greatly reduced requirementE for mechanical

stability, a duplication apparatus can employ a source having a relative-
ly short coherer,e length. Thus, although great effort may be required

to produce a mp.ster hologram hqving a very large depth of field, such u

hologram can be duplicated with no more effort than is required to

duplicate a hologram having a very limited depth of field.
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

A general analytical method has been formulated for com-

puting the diffracted field that ia produced when a volume hologram

is illuminated. The diffracted field is computed in terms of the

initial exposing field, the characteristics of the recording media

(assumed to be film), and the illumination field. The analysis

allows for a careful accounting of the response of the recording

media, and is applic-ble to both transmission and reflection holo-

gram3,

In the formulation of the analysis, it is assumed that

the exposing and illumination fields are known and can be specified

In the region of space occuried by the hologram in the form of a

sum of plane or quasi-plane waves. The diffracted field is computed

in the immediate vicinit:" of the hologram plate, and is also expressed

in the form of a sum of plane or quasi-plane waves. By expressing

the fields in this form, and neglecting multiple scattering,we are

able to compute each of the diffracted waves independently of the

others by solving a vriation ,'f the same basic problem, that of com-

puting the amplitudes, directions, and phases of the two-first order

waves that are produced when a three-dimensional sinusoidal array of

scattering part 4 cles is illuminated by a .lane wave.

The directions and phases of the diffracted waves pro-

duced by transmission holograms were found to be independent of the

three-eilminsional nature of the recording medfa, and are a function
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only of the direction, wavelength, and phase of the illumination wave

and the pe.'iodi(Aties Qf the recorded interference patterns in the

plane of the emulsion surface. OGneral expressions were derived

(equations 1.26, 1.28, and 1.34 ) for the directions and phast of

these diffracted waves, which are equivalent to the equations used

by Offner (l4), and these expressions are shown (in Chapter WNo)

to be equivalent to the expressions used by Gabor (5) in his for-

mulation of the theory of holography.

The equivalence of the two approaches with respect to the

computation of the directions and phases of the diffracted waves

stems from the fact that these quantities are independent of the

three-dimensional nature of the recording media, and thus the char-

acterization of the emulsion layer by the amplitude transmittance as

done by Gabor, which implicitly neglects variations with depth, still

yields correct results for the directions and phases of the diffr'acted

waves - even when the concept of amplitude transmittance becomes

questionable, as with thick transmission holograms involving high

spatial frequencies.

The transmittance approach, however, is not applicable to

reflection holograms or to the computation of the amplitudes of the

diffracted waves. Reflection ho.,.ograms are treated using the analysis

formulated here, and it is shown that a reconstruction of the signal

beam is obtained when the illumination wave is the reference beam, but

that no real image beam accompaniea the reconstruction of the signal

beam, or "virtual image." Reflection hologram are then briefly
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disewised and compared with transmission holograms.

In computing the amplitudes of the two first-order waves

diffracted by the sinusoidal array of scattering particles, the

individual scattered waves are summed coherently, neglecting multiple

scattering. Reflection losses as well as attenuation within the

emulsion layer are taken into account, and the illumination wave is

allowed to have any direction or wavelength. The resulting expressioA,

7'or the diffracted power (equation 4.57) is shown to reduce to the

results of Leith et al (8)W, who neglect attenuation and reflection

losset, and consider the case where the wave vector of the illumi-

nation wave has no -orponent along the direction of the grating

lines.

Supporting and extending this analytical work was an experi-

mental study of the holographic diffraction grating. The ratio of

the p dhetowero d-the--l-li -__o_

nation power was measured as a function of the direction of the

illmnination wave for different gratings, using different polarizations

and wavelengths. Comparison of computer generated curves with mea-

sured data showed that the theoretical and experimental results were

generally in good agreement. It was seen that for thick transmission

holograms, the power diffracted into the virtual or real images is

highly dependent on the direction of the illumination wave, and that

the power diffracted into the virtial image is a maximum when the

illumination wave is the reference beam.

The effect of having a reference beam which consists of a

sum of plane ojr quasi-plane vaveA was investigated (Chapter Three),

I



and it was shown that in order to obtain a reconstruction of the

signal beam, the hologram must be illuminated with almost the identi-

cl reference beam that was used to expose it. In practice this

usually requires that the experimental apparatus that va used to

expose the hologram be left undisturbed, and that th* devel-ped holo-

gra, be exactly repositioned in the experimental setup. The power

diffracted into the virtual image was computed as a function of error

in repositioning the hologram plate for a specific experiment and

then measured, and the experimental and theoretical results were

found to be in agreement.

The fact that the reference beam consists of a series of

waves rather than a single wave was seen to imply that the recon-

struction of the signal beam is accompanied by a "background noise."

A signal to noise ratio was defined and computed, and found to

approach unity as the number of waves in the reference beam becomes

large.

Complex spatial filtering and character recognition opera-

tions were interpreted in terms of multiple vavefront reference beam

Fourier transform holography, and the effects of translations of the

transparency and hologram were investigated, both with plane wave

and diffuse illumination.

In Chapter Five the general analytical method for com-

puting the diffracted field was applied to the problem of the

duplication of holograms. It was shown that the duplication process

should be viewed as that of recording a hologram of a hologram,
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, rather than that of making a contact print. Experimental evidence

was presented to support this point of view, and the effect of vary-

ing the characteristics of the illuxiastioa wave was described. In

addition, a simple method for duplicating reflection holograma was

proposed and discussed.
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APPENDIX I

VEMRQ INTERFE C OF T YWE WAOW- PRU ED POLAIZATION
FOR THE CASE WHERE THE R=CRDIM MEIUM 18 FILM

In this appendix we shall examine the interference p tttru

generated by two plane waves of the same frequency. We shall compute

the time average of the Poynting vector, energy in the electric field,

energy in the magnetic field and total energy. We shall then point out

that it makes a difference which quantity is used to characterize the

interference pattern and discuss the reasons why, in the case where the

recording medium is film, that the time average energy in the electric

field must be used to characterize the interference pattern. We will

then show that there is a preferred polarization with respect to the

recording of the interference pattern.

Thus, let us consider the case where two plane waves exist in

the sae region of space, where their propagation vectors are given by

2w( s cos e) (7-1)

and

"- ('xsin 0 + Zcoo G) .(1-2)

The two waves will be assumed to have arbitrary eliptical polarizations

and thus their electric field vectors can be written in the form (using

complex notation and suppressing the factor e"iwt )
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Is Y "  yly 10 1 1 10 c 'o0 sn e A (1-3)

and
16¥ eis iiE'

Y' r& e 20 co 6 + in ek)1 2  14

Y2er e 20  x

where ky E E 0 E t 6 1 6 and 620 are real constants.
yl Y 10 20' 6yl y2' 10 d

'The corresponding magnetic field vectors are found from a straightfor-

ward application of Maxwell's equations. using

1
i -vx 2 9-:
iWVi

We find

Ii = 3,E (-e cos 0 + sin e) * E. / e ie

(1-6)

and

I,-/ 16 . _ _.

I2 2A o - z fin 0) +E 20V_

(1-7)

TMe total electric field t 1 + 2 can be decomposed into

two orthogonal fields Ia and b, with corresponding magnetic fields

Pa and b, which are given by

I e, 1;+6' + E L( 2";+6Y2) ]

a y Y y2
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- C op ( ie±(E1 •64 ) i('. +6

-E e+ E 0 i~

Q *i 0 OLE e yz Y1 y.2

and
.;+610 )  i(E2 ;+a 20)

Eb " x Cos e [ElO e + E20 e

E.ic(s[E ' i+6w o ) i(E .+6so)J

z sin 0 [E10 e i i 6i) - E20 e 2; 20 )1  (1-10)

b ; IT l e ~i( ' 1 i+610 ) i (E2; 20));y/ '- I5.o =  •+ E20, 0zzL

MR-objerveA -is-_M ncular- theplnof-imidene-ef-the- two- - -

waves (the plane y w constant) and % in in the lant of incidence.

We are interested in computing the time average of the

Poynting vector, electric energy density, magnetl energy density and

total energy density. Papas (56) shows that these quantities are given

by

* Re {t x HO) (1-12)

W C. Ec (1-13)

W-1 (1-14)

and
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w W 4 Wm• a=

rempectively. It is clear from an exmamination of the above four equa,-

tions that due to the orthogonality of the fields a and * the abhov

quantities can be computed for each of these two fields separately.

We find

a i' 7 2osO + L y2 2E2wx AY1y

+ ~ ~ /L*n0[2 E 2E1 E s(-"sinO. 0 +6
x p 2 yl 2 yly yl y2'

ea /7in y22 -l y2 £,21 y 6y)

1 2 2 i y

.,- 'y + 2E7 Eo,2 ) CQ5 sin o° 7 .i o +y1 - 6y2) ()1

W c (E 2  E2 + 2cos(20) E7 E7 cowxL si -

ylY2Y1Y2y1 6Y2)

(1-18)

and

W (E 2 +E 2 +2co C8( 0)E E 008(-sin 0 6 -6
a 2 yl y 2  o l Y2 A Y" I 2

(1-19)

Simil.arly, we find
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" 2- EL E2 + £20 cos( 1.6 sin A 6b- 1 ,-1, 10n 20 +10

+ . °-g-n e~ o Bo fino sin ""0 "o° a -x 2 1E0  40 l 20 x 10 - 20'

.- -o o Mo o oon-1,o .4nAo- Aoll-

+ E2 o(0 E cs L snI

e 10 0 10 2 A 10 20)

(1-21)

b .1 2 ~ 1Z20 2-2~. 2E ,,2v 6 20 (1-22)

and

b  E 20 ( 0 E20 .os(Asin +610 620))

(1-23)

It is clear from equations 1-16 to 1-23 that it makes a con-

siderable difference as to which quantity is taken to characterize the

interference pattern. This, of course, will depend on which of the

quantities is important in the recording or measuring process. In

holography, when the recording process involves film as the recording

medium, it in the time-average energy in the electric field that is

important. To understand why this is so, it is necessary to consider
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some aspects of the formation of an image in the photographic process.

When the emulsion layer of the film is exposed to light of a sufficiently

short wavelength, certain changes take place which result in the form-

tion of what is termed the "latent image." When the film bearing this

latent image is chemically processed during the development procedure,

an image composed of metallic silver grains is formed, corresponding to

that which initially existed in the latent image.

What is of interest here is the interaction of the electro-

magnetic field with the filz emulsion in the formation of the latent

image. The nature of the process as it is presently understocd is dis-

cussed in detail in treatises on photographic chemistry and phctography

(57, 58). The essential point with regard to this discussion is that

the process involves the interaction of the electromagnetic field with

a bromide ion (BR-) in a silver bromide crystal within the emulsion

-ler-,-wi-th-the-ext -tl-ectron--bei-ng- -rased-to a- hgher-energy-9tate.

Thus, the interaction of interest is essentially that of the interaction

of an electromagnetic field with a nearly free electron. This proLlem

has been treated in detail, both from a classical point of view (59)

and from a quantum mechanical point of view (60). One finds that it is

the electric field that is important in the Interaction, and not the

magnetic field.

Thus, since the recording of the interference pattern depends

primarily nn We , we should expect diff'erent results for the two dif-

ferent polarizations, La and ., omring equations 1-17 and 1-21,

we observe that for small 0 , cos 20 * 1 and both cases are the same.
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However. as 0 increases, the visibility of the igt viil decrease

for the case vhere the electric field vector is in plah4 of inci-

dence, going to zero at 26 a 900 . On the other hand, the visibility

[ tne fringes will be independent of 0 vhen the electric fielA vector

is perpendicular to the plane of incidence (Case a). These bservati-ns

were experimenta'ly confirmed by Wiener (61) and are discussed in detail

by Born and Wolf (62).

It is clear then, in holographic experiments vbhre th. refer-

ence beam is brought in at a different angle from the signal beam, that

it is best to have the polarization of the signal beam sid reference beam

be perpendicular to the plane defined by the wave vectors of the signal

and reference beams.
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APPMuIX 11

ORA__ DUSIT , QUATION

In this appendix an expression for the grain density is

derived in terms of the initial exposing field and film constants I
0 C1, ... The field within the emulsion during exposure of the

film plate is given by (equation 1.6 )

A i .X . (Rn + n -r
0+ e- eu + L E n n • (a-1

0 n.J. n

The grain density D is expressed in terms of powers of IE by

(equation 1.7 )

D .C + C1  + C 2W + --- (11-2)
20

where I2 is given by

, ~~~IE12,,.e,.(z

Substitution of 2 from -quation II-1 into equation 11-3 yieldb

ik "r -i(kn' in -ik R (nr )

g2 + e e n + e e n
0 n nn n

+L - + i( -
n m

It is convenient to define the real numbers b and C as follows
n roD
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b U. ... Ljj ("1-5)
° IIQI °

c .fl .*. (i1-6)
Tam n a

Then f.. can be written in the form

e ( -n)- n + b -(o-n)' n
n on n

+ C i(n -R ).; + 1(0 n -Om)  (17

nm

It is readily seen that the second and third terms in equation Ii-7

can be combined as follows:

EOE bn(e o n n)b cos(k -o n)i2- Ib
nn on n

Noting that C = C it can be shown that the last term in equation

Ii-7 can be written in the form

C R e n mc c Cos[( )4'40-0, 3 (1-9)

Uon substitution of equations - and 11-9 into II-7 and

regrouping, one obtains
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2I

E + 2 b o ( - .- + E C o((R-i.
(11-jo)

The computation of I ( is somewhat lengtby but will

nevertheless be carried out in detail here. It is more profitable to

use the expression for WVlgiven in equation 11-7 rather than the one

given in equation II-10 , as it makes the eventual grouping of the

terms easier. The expression for Wj2 given by equation 11-7 is of the

form of a sum of four terms. Recalling

(a+bectd) 2 = a2+b + 2+d2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd

it is seen that EI is of the form (written in the order

2ab, 2ac, 2ad, a2, b2, c2 , d2, 2bc, 2bc, 2cd)

B =42RYE4 +i2 b b ei(2o -nm a -i( 0 m
o 0 0 a l3

-i(A- - i).i 1(0 + 0)
onn2 0i2k- -- r i(n++ E bb e e

rnpm

+ E CnC1 pq e u(nk+pY ; q i(nu +p0q)

n,m,pq

+:22 E b b e- 0n pq e ,O

o npq

+ 2 o E b n em •
n, psq
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+ 2 L bnCqy e . n( (rI-u)
* npq

This can be written in the form (recalling .pq Cqp )

1 .2E 24W 2 ou(2 44 *b4 4

0n n

+ CX cos[(K -k +k)4 0+0 -0)npq m

+ 49 p Co[('-Oi+Rpq).*-On+0p-0q -

+ V CCoN i A m q e O pq (11-12)
ripmp q

The expressions for P and M4 given in equations 11-10 and 11-12

are subtituted in equation 11-2 to yield

C12 + C2E 4 + 1 E + 4c2
3 ) Z b coUk 4

+ (C +2C E 2 ) E C~ co[k )'O-a

+ 2C4. b n b mcos[('n 4 )40 O-0 3
n; m

+ 2C 2 ; 2 .-os[2(k -k )-i-20
n ~ n n
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+ 2C 2  b ba co[(2-i-a)44-O'O

n*M

+ C2 11 n pq coa(OSnR-q ;O+O-q

o highe.r order terms (11-13)
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APPENDIX TII

I OfTPASSFOATION UATIONS

In this appendix ye shall list the transformation equations

for the coordinates and direction cosines that exist betveen the

x'ytz, xyt, and x"y"z" coordinate aystems, as referred to in

Chapter One.

The xyz system is formed by a rotation of * (equation

1.16) about the z' axis. The corresponding transformation equation

are

xv nxcoso -Y sin$ (Ill-1)

y' X sin* * y cooe (111-2)

Z' = (I-3) -

and

1' L cos# - m sin# (III-4)

nt n (111-6)

the x"y" s" system is formed by a rotation of 0 (equation 1.55)

about the x axis. The corresponding transformation equations are

x •X" (111-7)
y a y" con 0 - z" sin a II8

z a Y" sin 8 + z" cooB (I11-9)

and

I lot (111-10)

a n ot Cos B - n" sin B (III-li)

n a a" sin B * n" coo B (111-12)
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APPENOIX IV

n"SLATION SEMSITZVITY CALCIATIONS

In this appendix we shall Compute the effet# or a translation of

the film plate on the phase of one of the diffracted waves which contri-

butes to the reconstruction of the mtb signal wave in equation 3.11.

There are P such waves which contribute to the mth signal wave, and

we shall consider the jth one of these. This wave is produced by the

jth reference wave interacting with the pariodicity corresponding to

C cos[i +~

The loci of points of aaximAn grain density in this periodicity in given

by

+ m 2Mj (I-l

Defining, as before, the x y z coordinate system to be formd by a rota-

tion of about the -' axis,vhre_

# a an- (IV-2)

(Vm',n' being direction cosines in the x1 y' z' sys ea), equation

iir-i can be written in the form (in the z a 0 plane)

(mj- m)y + Oj - O - 2 M (IV-3)

A displacement of the film plate an amunt &y in the y direction

swans that we replace y by y - AY in equation IV-3. The loci of

points of mwiaus grain density are then specified by

(aj - )(y - y) + Oj - - 2,M • (IV-4)



• ii

We specify the phase of the wave diffracted by the periodicity under

consideration by requiring that the interference pattern generated by

the transmitted portion or the illuinatlon vave and th*e diffracted

wave "match up" with the recorded interference pottern so specified by

equation IV-4g, $if v V# art r-11 m -in tiin with one of the two

ori inal waves which produced the periodicity under consideration, one

of the first-ordir waves will have the direction of the other initial

wave. The re-illu ination interference pattern vhich is of interest

is thus specified by (in the % a 0 plane)

(M- %)y +04-0 4  2wN - (IV-

We specify 0 d by requiring that the loci of points of minimum electric

field in the above re-illumination pattern coincide with the locAi of

points of maxim=a grain density. Thus ve set M w 0 in equation IV-4,

eelve-~ftr~r, -*w4-4 it -ti vlsrVieqaonT-.-We then-_____

solve equat'on IV-5 for 0d with 9 a 1/2 . Thus

* . L~.+ (IV-6)
(an- am)

and

,.4 mm M _A~y +0 €, 0 d" I-

or

0d + -n : hy(m- Xs) • (IV-8)

This is equivalent to the result specified by equation 3.15, which is
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slihtly more general since it allows for a translation or the tilm

plate in the z direction, vhle IV-8 only allows for a translation in

the x'y' plae. To show this eq ivalenoe we express equation 3.15 JA

the x y z coordinate system efIod by e*qutio IV-2. ftcalling that

It a 11 in this systea 3 and taking i Axe + Ay e quation 3.l1'

becoma

(m -%) Ay (Ov-9)

which corresponds to having

d0+ 0W Ay (3 3 a)(Y-

Ia"€,". 1i 1 z-o

i£
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TMrABO1M RZIA M ICELAO TWS %N r

In this appegdix we hell review the subjeet of trftn form re-

lations in coherent optical systems. We shall derive the relationship

between the field amplitudes in the front and back focal plane of an

ideal lens. The derivation which we shall give will be essentially

that given by Cutrona et al (29). Other derivation# can be found in

articles by Champagne (30) and by Vander Lugt (44).

Let us conjider the system shown in Figure V-la. Some system,

such as a point cource in the focal plane of a lens, produces a colli-

mated beam which has some complex amplitude distributien E (xlty) in

plane P, . We wish to compute the resulting distribution E2(x2 ,y2 )

in P2 , where the plane P2  is taken to be the back focal plane of

lens 1.

The method that will be used will be to apply Fresnel-

Kirehhoff diffraction theory, treating plane P1  a a large diffracting

aperture with covplex transmittance E1 (xl,y1 ) , illuminated by a plane

wave of unit amplitude at normal incidence. Thus, applying the results

of Freenel-Kirchhoff diffraction theory (64), we write

~rr ikr
E (x2 y)u--j E (xity1 ) !- (1 + coo *Id~x dy (N-1)
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where the effect of the lans has been taken into account by replacing

the ditwtce S in the exporent by r , the optical path length between

( ,l~y) and (a~ 2

The quanti wi C ll be removed from under the inte-
The quantity

gral and set equal to 2/f . Note that N.- set I/S - I/f not l/f+g ,

as we neglect the amplitude attenuation due to the distance g between

plane P and the lens, since we have a collimated beam to the left of

the lens. Thus

E2 (x2 ,y2 ) - - j J E(x ) ikr dxy 1  . (V-2)

The next problem is to compute r , the optical path length. This will

be done for the special two-dimensional case that results if we set

1 a 0 . Consider the diagram shown in Figure V-lb. Since plane

P2 is the back focal plane of the lens, a plane wave making an angle 0
witA the normal to the P (with wave vector I in the xz plane) is

brought to focus at the point (x2,0) in plane P2 " Any point on the

P{ plane which is taken to be a plane perpendicular to i is the seine

op*ical distance c a r + r2  from x2 . The optical path length be-

tween (xl,0) and (x2,0) is thus seen to be

r(xl,O,x 2 ,0) r1 + r 2 - d (V-3)

Nov

rI + r. xo 2Cos
2 0 +\/ x2 +fe (V-4)

•1 2
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or

r + cos2 +
9 f

By similar triangles, it is seen that

xo x2

- -- (v-6)S f '

It rill be assumed that 0 is small, which implies that we can take
x2

cos 0 1 and 1-"2 . Hence

rl + r2  V 7_ ()2 + iT (2)2 (V-7)
+ f f7( V7

Expanding the square root vsing (1 + a)" a% 1 + na yields

r + r  -- g[ 1 (:&)2] +.f[ I+ (Z)2] (V-8)

or 2
12

r +r 2 - g+ + (1-+)r 2 (V-9)

The distance d is seen to be (from Figure V-lb)

d a x1 sine (V4-0)

but
x2

sin e T2 (V-11)

hence



r(xC CX21) g l ' Y~2

f f

A similar, but more lengthy, computation yields for the general case

rA x ) g + f + (l -1) (2 +Y) _ l 2 Y'3Y2 (_
Iylv,2 vy2  f2f f -2f

The constant terr g + f uill be suppressed since it merely adds a

constant phase IT 'ctor. Thus, if ye define S(x 2 ,y 2 ) as

22) f 2f2

then

___- ~~~ io'kL'Y )Tf 1~~7~i~_2w (x 1 _yy)

___(X 2 A__ __ 1 ik( 2, 2  1- j-'__- ____

(v-16)

Defining the "spatial frequencies" and n~ as

2w (-T
7-f*: x2  

(-

and
2w (V-18)
Af J2

equation 2.85 becomes

E2 fe JJB E (x1 1 1 0(- + dx dy~ (V-19)
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The above formulas vere derived assuming a time variation of the form
*-iwt iobt,

• If a time variation of the form e is used, then the re-

suit is a change in sign of k and hence and n are defined as

2 (v-2o)

2w (v-21)

and the expression for E2  becomes

E2  " e-Bk E JJ Ee(Xl ) eix + 1) dx 1dy (V-22)

In the following we will use the e time convention so equations

V-16 and V-19 will be applicable.

It is observed that when plane P1  is the front focal plane

of the lens, then g s f and 8 = 0 . Thus, for this case, (apart

from a constant) E1  and E2 form a Fourier transform pair. Hence E.

can be found from E2  by an inverse Fourier transform

12fIf i(Cxl 1 + i )

E(X,yl) . - (L)2 () E 2 (En) . ) dt dn (V-23)

or, since 4 L x2  and n a '2

E1(xy 1 ) = J E2(x2 ,y2 ) i • (xlx2 + Y ,2) (v-24)

1
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We can check to see If the constant i/Xf is correct by applying

Parsevalts theorem and the conservation of enero. This is done as

follows: Conservation of energy requires that

E2(x x1 y )dx dy UJJ 2 ,y)1ty (V-25)

where E2  EE*

We have shown that 92 is given in terms of E1  by

E2 -JC E(xl,y) e e 1  dx dy1  (v-26)
~i

or

1 2  E exld f{E l} . (V-27)

Thus E2 /C and E, form a Fourier transform pair. Applying Parseval's

theorem

dx dy- (1)2 7 (,) d n (V-28)

or

40 2
E dx dy1 U: (L) ( 2,-
-40~ -0



We observe con~servation of ener~r requires 1 (-L)2 I hence

IC Acnf (V-30)
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APPENDIX VI

SINUSOIDAL GRAIN DISITY - AIBSNCE or THE

In this appendix we shall show that if the spatial variation

of the grain density is sinueoidal, then only the fit-order diffracted

waves are produced when the grains are illuminated with a plane wave.

Lot us begin by summing the waves scattered by the grains located in

the z •0 plane (we shall use the xyz coordinate system defined in

Section 1.3.3). The grain density in this plane is of the form

D(x,y,,O) a DO [1 + co(,'y')) (VI-l)

where d is the periodicity or fringe spacing in the z =0 plane (the

plane of the emulsion surface). The directions of the diffracted waves

are specifid (seeSectYon 173 .I;"byrequir hat there-be-no-phse

difference between the vaves scattered by grains with the same y

coordinate and that there be a linear phase shift of

de

as we move in the y direction, where N is the diffracted order under

consideration (N a *1, k2, etc.). The amplitude of the particular

diffracted wave under consideration is proportional to

A D(x,y,) (VI-2)(V-2
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where the integration over x and y corresponds to integrating

over the transverse extent of the hologram ratin. Becsme of the

periodic nature of D(z,y,O) we need only consider the integration

over y a 0 to y a d . It Is straightfrokvai to show that

fo d

vanishes for all integer values of N except N 11'l, and thus we

conclude that only the tvo-first order waves will be produced by the

grains in the z - 0 plane. The same conclusion is reached for the

grains located in any plane z w constant and hence the grating will

produce only the two first-order waves.

£
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PATHI LMOM DIFlF2ICE5

In this appendIx we shall compute the path length differences

involved in the duplic&tlon or a holographic diffraction grating.

Illumination of the holographic diffraction grating as shown in

Figure VII-l with a plane wave produces tvo first-order diffracted

plane waves and a zeroth-orde? plane ave. The directions ed of the

diffracted waves are found from

sin ed 0 sin e + d (VII-i)

We wish to consider the case where arrangement of the master

and duplicate plates is as shown in Figure VI1-2, vhere the region be-

tween the two emulsion lay-ar is filled with a fluid having an index of

refraction n . We shall compute the optical path length difference be-- ---

tveen the zeroth-order wave and either of the two first order waves at

an arbitrary point P in the plane of the emulsion surface of the

duplicate film plate. We shall assume that the diffraction by the

holographic diffraction grating takes place at the emulsion-fluid

interface (i.e., ve neglect the thickness of the emulsion layer) and

hence, as seen from Figure VII-2, the optical path length difference

AL is given by

AL n d 1 +rid 2 nd3 . (VII-2)
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We observe that

dI m h i rn 0"( II )

and that

tan a (VtJ. 

Now

b 6 tan - b(vI-)

and

h2  d6 tan ' (vii-6)

and hence

djm- 6(ta j- O )sno" .(VII-7)

We see that

d2  on-'- __ (VII-B)

and

d3 Cos O (VII-9)

and thus

AL a 6 (r e sin O (tan el - tan e') + - - .r-e + o oon e I

Now, using Snell's Law

n sin 01 , n sin 0e (VIIin



equation VI-10 beco~mes

AL mn6lUtma 0!- tan 0-) sin 01' ~--) (Z-~
dd I o I o
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